{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,14]],"date-time":"2024-09-14T19:07:54Z","timestamp":1726340874157},"reference-count":84,"publisher":"Springer Science and Business Media LLC","issue":"12","license":[{"start":{"date-parts":[[2018,11,14]],"date-time":"2018-11-14T00:00:00Z","timestamp":1542153600000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Neural Comput & Applic"],"published-print":{"date-parts":[[2019,12]]},"DOI":"10.1007\/s00521-018-3870-x","type":"journal-article","created":{"date-parts":[[2018,11,14]],"date-time":"2018-11-14T07:30:46Z","timestamp":1542180646000},"page":"8823-8836","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":39,"title":["Predictive modelling of the higher heating value in biomass torrefaction for the energy treatment process using machine-learning techniques"],"prefix":"10.1007","volume":"31","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8880-6348","authenticated-orcid":false,"given":"P. J.","family":"Garc\u00eda Nieto","sequence":"first","affiliation":[]},{"given":"E.","family":"Garc\u00eda-Gonzalo","sequence":"additional","affiliation":[]},{"given":"J. P.","family":"Paredes-S\u00e1nchez","sequence":"additional","affiliation":[]},{"given":"A.","family":"Bernardo S\u00e1nchez","sequence":"additional","affiliation":[]},{"given":"M.","family":"Men\u00e9ndez Fern\u00e1ndez","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,11,14]]},"reference":[{"issue":"1","key":"3870_CR1","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1016\/j.rser.2007.07.003","volume":"13","author":"M Alegr\u00eda de","year":"2009","unstructured":"de Alegr\u00eda M, Mancisidor I, de Basurto D, Uraga P, de Alegr\u00eda M, Mancisidor I, de Arbulo R, L\u00f3pez P (2009) European Union\u2019s renewable energy sources and energy efficiency policy review: the Spanish perspective. Renew Sustain Energy Rev 13(1):100\u2013114","journal-title":"Renew Sustain Energy Rev"},{"issue":"3","key":"3870_CR2","doi-asserted-by":"crossref","first-page":"919","DOI":"10.1016\/j.rser.2009.11.006","volume":"14","author":"T Abbasi","year":"2010","unstructured":"Abbasi T, Abbasi SA (2010) Biomass energy and the environmental impacts associated with its production and utilization. Renew Sustain Energy Rev 14(3):919\u2013937","journal-title":"Renew Sustain Energy Rev"},{"key":"3870_CR3","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1016\/j.biombioe.2013.02.003","volume":"57","author":"F Kraxner","year":"2013","unstructured":"Kraxner F, Nordstr\u00f6m E-M, Havl\u00edk P, Gusti M, Mosnier A, Frank S, Valina H, Fritza S, Fussa S, Kindermanna G, McCalluma I, Khabarova N, B\u00f6ttchera H, Seea L, Aokia K, Schmide E, M\u00e1th\u00e9g L, Obersteiner M (2013) Global bioenergy scenarios: future forest development, land-use implications, and trade-offs. Biomass Bioenergy 57:86\u201396","journal-title":"Biomass Bioenergy"},{"issue":"5","key":"3870_CR4","doi-asserted-by":"crossref","first-page":"384","DOI":"10.1089\/ind.2011.7.384","volume":"7","author":"J Shankar Tumuluru","year":"2011","unstructured":"Shankar Tumuluru J, Sokhansanj S, Hess JR, Wright CT, Boardman RD (2011) REVIEW: a review on biomass torrefaction process and product properties for energy applications. Ind Biotechnol 7(5):384\u2013401","journal-title":"Ind Biotechnol"},{"issue":"9","key":"3870_CR5","first-page":"3748","volume":"35","author":"MJC Stelt van der","year":"2011","unstructured":"van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy 35(9):3748\u20133762","journal-title":"Biomass Bioenergy"},{"key":"3870_CR6","doi-asserted-by":"crossref","first-page":"665","DOI":"10.1016\/j.rser.2015.10.014","volume":"54","author":"Q-V Bach","year":"2016","unstructured":"Bach Q-V, Skreiberg \u00d8 (2016) Upgrading biomass fuels via wet torrefaction: a review and comparison with dry torrefaction. Renew Sustain Energy Rev 54:665\u2013677","journal-title":"Renew Sustain Energy Rev"},{"issue":"1","key":"3870_CR7","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1016\/j.jaap.2006.01.002","volume":"77","author":"MJ Prins","year":"2006","unstructured":"Prins MJ, Ptasinski KJ, Janssen FJJG (2006) Torrefaction of wood: part 1\u2014weight loss kinetics. J Anal Appl Pyrol 77(1):28\u201334","journal-title":"J Anal Appl Pyrol"},{"issue":"8","key":"3870_CR8","doi-asserted-by":"crossref","first-page":"4212","DOI":"10.1016\/j.rser.2011.09.017","volume":"15","author":"JJ Chew","year":"2011","unstructured":"Chew JJ, Doshi V (2011) Recent advances in biomass pretreatment: torrefaction fundamentals and technology. Renew Sustain Energy Rev 15(8):4212\u20134222","journal-title":"Renew Sustain Energy Rev"},{"key":"3870_CR9","doi-asserted-by":"crossref","first-page":"460","DOI":"10.1016\/j.biortech.2012.07.018","volume":"124","author":"RB Bates","year":"2012","unstructured":"Bates RB, Ghoniem AF (2012) Biomass torrefaction: modeling of volatile and solid product evolution kinetics. Biores Technol 124:460\u2013469","journal-title":"Biores Technol"},{"key":"3870_CR10","volume-title":"Biomass gasification, pyrolysis and torrefaction: practical design and theory","author":"P Basu","year":"2013","unstructured":"Basu P (2013) Biomass gasification, pyrolysis and torrefaction: practical design and theory. Academic Press, New York"},{"key":"3870_CR11","first-page":"1","volume":"2014","author":"DR Nhuchhen","year":"2014","unstructured":"Nhuchhen DR, Basu P, Acharya B (2014) A comprehensive review on biomass torrefaction. Int J Renew Energy Biofuels 2014:1\u201356","journal-title":"Int J Renew Energy Biofuels"},{"key":"3870_CR12","doi-asserted-by":"crossref","first-page":"847","DOI":"10.1016\/j.rser.2014.12.039","volume":"44","author":"WH Chen","year":"2015","unstructured":"Chen WH, Peng J, Bi XT (2015) A state-of-the-art review of biomass torrefaction, densification and applications. Renew Sustain Energy Rev 44:847\u2013866","journal-title":"Renew Sustain Energy Rev"},{"key":"3870_CR13","doi-asserted-by":"crossref","first-page":"671","DOI":"10.1016\/j.proeng.2016.06.550","volume":"148","author":"S Matali","year":"2016","unstructured":"Matali S, Rahman NA, Idris SS, Yaacob N, Alias AB (2016) Lignocellulosic biomass solid fuel properties enhancement via torrefaction. Procedia Eng 148:671\u2013678","journal-title":"Procedia Eng"},{"key":"3870_CR14","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1016\/j.wasman.2015.07.032","volume":"47","author":"KA Motghare","year":"2016","unstructured":"Motghare KA, Rathod AP, Wasewar KL, Labhsetwar NK (2016) Comparative study of different waste biomass for energy application. Waste Manag 47:40\u201345","journal-title":"Waste Manag"},{"issue":"2","key":"3870_CR15","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1016\/j.wasman.2011.09.027","volume":"32","author":"X Liu","year":"2012","unstructured":"Liu X, Wang W, Gao X, Zhou Y, Shen R (2012) Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste. Waste Manag 32(2):249\u2013255","journal-title":"Waste Manag"},{"key":"3870_CR16","volume-title":"Statistical learning theory","author":"V Vapnik","year":"1998","unstructured":"Vapnik V (1998) Statistical learning theory. Wiley, New York"},{"key":"3870_CR17","volume-title":"Neural networks: a comprehensive foundation","author":"S Haykin","year":"1999","unstructured":"Haykin S (1999) Neural networks: a comprehensive foundation. Pearson Education Inc., Singapure"},{"key":"3870_CR18","doi-asserted-by":"crossref","DOI":"10.1017\/CBO9780511801389","volume-title":"An introduction to support vector machines and other kernel-based learning methods","author":"N Cristianini","year":"2000","unstructured":"Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, New York"},{"issue":"5","key":"3870_CR19","doi-asserted-by":"crossref","first-page":"1207","DOI":"10.1162\/089976600300015565","volume":"12","author":"B Sch\u00f6lkopf","year":"2000","unstructured":"Sch\u00f6lkopf B, Smola AJ, Williamson R, Bartlett P (2000) New support vector algorithms. Neural Comput 12(5):1207\u20131245","journal-title":"Neural Comput"},{"key":"3870_CR20","volume-title":"The elements of statistical learning","author":"T Hastie","year":"2003","unstructured":"Hastie T, Tibshirani R, Friedman J (2003) The elements of statistical learning. Springer, New York"},{"key":"3870_CR21","doi-asserted-by":"crossref","first-page":"351","DOI":"10.1016\/j.jpowsour.2004.09.020","volume":"141","author":"T Hansen","year":"2005","unstructured":"Hansen T, Wang CJ (2005) Support vector based battery state of charge estimator. J Power Sources 141:351\u2013358","journal-title":"J Power Sources"},{"key":"3870_CR22","doi-asserted-by":"crossref","first-page":"1611","DOI":"10.1016\/j.aap.2008.04.010","volume":"40","author":"X Li","year":"2008","unstructured":"Li X, Lord D, Zhang Y, Xie Y (2008) Predicting motor vehicle crashes using support vector machine models. Accid Anal Prev 40:1611\u20131618","journal-title":"Accid Anal Prev"},{"key":"3870_CR23","volume-title":"Support vector machines","author":"I Steinwart","year":"2008","unstructured":"Steinwart I, Christmann A (2008) Support vector machines. Springer, New York"},{"key":"3870_CR24","doi-asserted-by":"crossref","DOI":"10.1002\/9781118023471","volume-title":"An elementary introduction to statistical learning theory","author":"S Kulkarni","year":"2011","unstructured":"Kulkarni S, Harman G (2011) An elementary introduction to statistical learning theory. Wiley, New York"},{"key":"3870_CR25","doi-asserted-by":"crossref","unstructured":"Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the fourth IEEE international conference on neural networks, vol 4. IEEE Publisher, Perth, pp 1942\u20131948","DOI":"10.1109\/ICNN.1995.488968"},{"key":"3870_CR26","volume-title":"Swarm intelligence","author":"RC Eberhart","year":"2001","unstructured":"Eberhart RC, Shi Y, Kennedy J (2001) Swarm intelligence. Morgan Kaufmann, San Francisco"},{"key":"3870_CR27","doi-asserted-by":"crossref","DOI":"10.1002\/9780470612163","volume-title":"Particle swarm optimization","author":"M Clerc","year":"2006","unstructured":"Clerc M (2006) Particle swarm optimization. Wiley-ISTE, London"},{"key":"3870_CR28","volume-title":"Particle swarm optimization: theory, techniques and applications","author":"AE Olsson","year":"2011","unstructured":"Olsson AE (2011) Particle swarm optimization: theory, techniques and applications. Nova Science Publishers, New York"},{"key":"3870_CR29","doi-asserted-by":"crossref","DOI":"10.7551\/mitpress\/1290.001.0001","volume-title":"Ant colony optimization","author":"M Dorigo","year":"2004","unstructured":"Dorigo M, St\u00fctzle T (2004) Ant colony optimization. Bradford Publisher, Cambridge"},{"key":"3870_CR30","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-642-17390-5","volume-title":"Handbook of swarm intelligence: concepts, principles and applications","author":"BK Panigrahi","year":"2011","unstructured":"Panigrahi BK, Shi Y, Lim M-H (2011) Handbook of swarm intelligence: concepts, principles and applications. Springer, Berlin"},{"issue":"3","key":"3870_CR31","doi-asserted-by":"crossref","first-page":"459","DOI":"10.1007\/s10898-007-9149-x","volume":"39","author":"D Karaboga","year":"2007","unstructured":"Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459\u2013471","journal-title":"J Glob Optim"},{"issue":"1","key":"3870_CR32","first-page":"68","volume":"31","author":"D Karaboga","year":"2009","unstructured":"Karaboga D, Akay B (2009) A survey: algorithms simulating bee swarm intelligence. Artif Intell Rev 31(1):68\u201385","journal-title":"Artif Intell Rev"},{"key":"3870_CR33","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1016\/j.asoc.2014.06.035","volume":"23","author":"D Karaboga","year":"2014","unstructured":"Karaboga D, Gorkemli B (2014) A quick artificial bee colony (qABC) algorithm and its performance on optimization problems. Appl Soft Comput 23:227\u2013238","journal-title":"Appl Soft Comput"},{"key":"3870_CR34","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1007\/978-3-319-14400-9_1","volume-title":"Adaptation and hybridization in computational intelligence","author":"I Fister","year":"2015","unstructured":"Fister I, Stranad D, Yang X-S, Fister I Jr (2015) Adaptation and hybridization in nature-inspired algorithms. In: Fister I, Fister I Jr (eds) Adaptation and hybridization in computational intelligence, vol 18. Springer, New York, pp 3\u201350"},{"key":"3870_CR35","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1016\/j.agrformet.2014.09.025","volume":"200","author":"NK Shrestla","year":"2015","unstructured":"Shrestla NK, Shukla S (2015) Support vector machine based modeling of evapotranspiration using hydro-climatic variables in a sub-tropical environment. Agric For Meteorol 200:172\u2013184","journal-title":"Agric For Meteorol"},{"key":"3870_CR36","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1016\/j.enconman.2013.06.034","volume":"75","author":"J-L Chen","year":"2013","unstructured":"Chen J-L, Li G-S, Wu S-J (2013) Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration. Energy Convers Manag 75:311\u2013318","journal-title":"Energy Convers Manag"},{"key":"3870_CR37","doi-asserted-by":"crossref","first-page":"118","DOI":"10.1016\/j.renene.2012.10.009","volume":"52","author":"J Zeng","year":"2013","unstructured":"Zeng J, Qiao W (2013) Short-term solar power prediction using a support vector machine. Renew Energy 52:118\u2013127","journal-title":"Renew Energy"},{"issue":"35","key":"3870_CR38","doi-asserted-by":"crossref","first-page":"4481","DOI":"10.1016\/j.atmosenv.2010.07.024","volume":"44","author":"EG Ortiz-Garc\u00eda","year":"2010","unstructured":"Ortiz-Garc\u00eda EG, Salcedo-Sanz S, P\u00e9rez-Bellido AM, Portilla-Figueras JA, Prieto L (2010) Prediction of hourly O3 concentrations using support vector regression algorithms. Atmos Environ 44(35):4481\u20134488","journal-title":"Atmos Environ"},{"issue":"10","key":"3870_CR39","doi-asserted-by":"crossref","first-page":"1763","DOI":"10.1007\/s11269-006-9126-z","volume":"21","author":"M Pal","year":"2007","unstructured":"Pal M, Goel A (2007) Estimation of discharge and end depth in trapezoidal channel by support vector machines. Water Resour Manag 21(10):1763\u20131780","journal-title":"Water Resour Manag"},{"issue":"7","key":"3870_CR40","doi-asserted-by":"crossref","first-page":"2577","DOI":"10.1007\/s11269-013-0304-5","volume":"27","author":"MR Nikoo","year":"2013","unstructured":"Nikoo MR, Mahjouri N (2013) Water quality zoning using probabilistic support vector machines and self-organizing maps. Water Resour Manag 27(7):2577\u20132594","journal-title":"Water Resour Manag"},{"key":"3870_CR41","volume-title":"Feedforward neural networks methodology","author":"TL Fine","year":"1999","unstructured":"Fine TL (1999) Feedforward neural networks methodology. Springer, New York"},{"issue":"1","key":"3870_CR42","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman L (2001) Random forests. Mach Learn 45(1):5\u201332","journal-title":"Mach Learn"},{"key":"3870_CR43","volume-title":"Machine learning","author":"TM Mitchell","year":"1997","unstructured":"Mitchell TM (1997) Machine learning. McGraw-Hill Company Inc, New York"},{"key":"3870_CR44","doi-asserted-by":"crossref","first-page":"180","DOI":"10.1016\/j.energy.2014.02.061","volume":"72","author":"T Nocquet","year":"2014","unstructured":"Nocquet T, Dupont C, Commandre J, Grateau M, Thiery S, Salvador S (2014) Volatile species release during torrefaction of wood and its macromolecular constituents: part 1\u2014experimental study. Energy 72:180\u2013187","journal-title":"Energy"},{"key":"3870_CR45","doi-asserted-by":"crossref","first-page":"188","DOI":"10.1016\/j.energy.2014.05.023","volume":"72","author":"T Nocquet","year":"2014","unstructured":"Nocquet T, Dupont C, Commandre J, Grateau M, Thiery S, Salvador S (2014) Volatile species release during torrefaction of biomass and its macromolecular constituents: part 2\u2014modeling study. Energy 72:188\u2013194","journal-title":"Energy"},{"issue":"3","key":"3870_CR46","doi-asserted-by":"crossref","first-page":"1399","DOI":"10.1007\/s10973-017-6350-0","volume":"130","author":"AL Bychkov","year":"2017","unstructured":"Bychkov AL, Denkin AI, Tikhova VD, Lomovsky OI (2017) Prediction of higher heating values of plant biomass from ultimate analysis data. J Therm Anal Calorim 130(3):1399\u20131405","journal-title":"J Therm Anal Calorim"},{"key":"3870_CR47","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1016\/j.fuel.2018.02.092","volume":"221","author":"R Galhano dos Santos","year":"2018","unstructured":"Galhano dos Santos R, Bordado JC, Mateus MM (2018) Estimation of HHV of lignocellulosic biomass towards hierarchical cluster analysis by Euclidean\u2019s distance method. Fuel 221:72\u201377","journal-title":"Fuel"},{"key":"3870_CR48","doi-asserted-by":"crossref","first-page":"207","DOI":"10.1016\/j.fuel.2016.04.111","volume":"181","author":"E Peduzzi","year":"2016","unstructured":"Peduzzi E, Boissonnet G, Mar\u00e9chal F (2016) Biomass modelling: estimating thermodynamic properties from the elemental composition. Fuel 181:207\u2013217","journal-title":"Fuel"},{"issue":"2","key":"3870_CR49","doi-asserted-by":"crossref","first-page":"681","DOI":"10.1007\/s12155-013-9393-5","volume":"7","author":"SB Ghugare","year":"2014","unstructured":"Ghugare SB, Tiwary S, Elangovan V, Tambe SS (2014) Prediction of higher heating value of solid biomass fuels using artificial intelligence formalisms. Bioenergy Res 7(2):681\u2013692","journal-title":"Bioenergy Res"},{"key":"3870_CR50","doi-asserted-by":"crossref","first-page":"377","DOI":"10.1016\/j.fuel.2016.04.051","volume":"180","author":"I Estiati","year":"2016","unstructured":"Estiati I, Freire FB, Freire JT, Aguado R, Olazar M (2016) Fitting performance of artificial neural networks and empirical correlations to estimate higher heating values of biomass. Fuel 180:377\u2013383","journal-title":"Fuel"},{"issue":"3","key":"3870_CR51","doi-asserted-by":"crossref","first-page":"397","DOI":"10.1016\/j.joei.2016.04.003","volume":"90","author":"U Ozveren","year":"2017","unstructured":"Ozveren U (2017) An artificial intelligence approach to predict gross heating value of lignocellulosic fuels. J Energy Inst 90(3):397\u2013407","journal-title":"J Energy Inst"},{"issue":"1","key":"3870_CR52","doi-asserted-by":"crossref","first-page":"170","DOI":"10.1016\/j.renene.2009.05.008","volume":"35","author":"M Erol","year":"2010","unstructured":"Erol M, Haykiri-Acma H, K\u00fc\u00e7\u00fckbayrak S (2010) Calorific value estimation of biomass from their proximate analyses data. Renew Energy 35(1):170\u2013173","journal-title":"Renew Energy"},{"issue":"5","key":"3870_CR53","doi-asserted-by":"crossref","first-page":"3065","DOI":"10.1016\/j.rser.2012.02.054","volume":"16","author":"JM Vargas-Moreno","year":"2012","unstructured":"Vargas-Moreno JM, Callej\u00f3n-Ferre AJ, P\u00e9rez-Alonso J, Vel\u00e1zquez-Mart\u00ed B (2012) A review of the mathematical models for predicting the heating value of biomass materials. Renew Sustain Energy Rev 16(5):3065\u20133083","journal-title":"Renew Sustain Energy Rev"},{"key":"3870_CR54","doi-asserted-by":"crossref","first-page":"983","DOI":"10.1016\/j.enconman.2003.08.018","volume":"45","author":"A Demirbas","year":"2004","unstructured":"Demirbas A (2004) Linear equations on thermal degradation products of wood chips in alkaline glycerol. Energy Convers Manag 45:983\u2013994","journal-title":"Energy Convers Manag"},{"key":"3870_CR55","unstructured":"Energy Research Centre of the Netherlands (ECN) (2018) Research database for biomass and waste. https:\/\/www.ecn.nl\/phyllis2\/ . Accessed 5 July 2018"},{"issue":"14","key":"3870_CR56","doi-asserted-by":"crossref","first-page":"1449","DOI":"10.1007\/s11434-010-4292-z","volume":"56","author":"Q Chen","year":"2011","unstructured":"Chen Q, Zhou J, Liu B, Mei Q, Luo Z (2011) Influence of torrefaction pretreatment on biomass gasification technology. Chin Sci Bull 56(14):1449\u20131456","journal-title":"Chin Sci Bull"},{"issue":"2","key":"3870_CR57","doi-asserted-by":"crossref","first-page":"1246","DOI":"10.1016\/j.biortech.2010.08.028","volume":"102","author":"M Phanphanich","year":"2011","unstructured":"Phanphanich M, Mani S (2011) Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Biores Technol 102(2):1246\u20131253","journal-title":"Biores Technol"},{"issue":"17","key":"3870_CR58","doi-asserted-by":"crossref","first-page":"8225","DOI":"10.1016\/j.biortech.2011.05.093","volume":"102","author":"P Rousset","year":"2011","unstructured":"Rousset P, Aguiar C, Labb\u00e9 N, Commandr\u00e9 JM (2011) Enhancing the combustible properties of bamboo by torrefaction. Biores Technol 102(17):8225\u20138231","journal-title":"Biores Technol"},{"key":"3870_CR59","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1016\/j.biortech.2012.07.096","volume":"123","author":"KM Lu","year":"2012","unstructured":"Lu KM, Lee WJ, Chen WH, Liu SH, Lin TC (2012) Torrefaction and low temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air atmospheres. Biores Technol 123:98\u2013105","journal-title":"Biores Technol"},{"issue":"2","key":"3870_CR60","doi-asserted-by":"crossref","first-page":"967","DOI":"10.1021\/ef301928q","volume":"27","author":"JH Peng","year":"2013","unstructured":"Peng JH, Bi HT, Lim CJ, Sokhansanj S (2013) Study on density, hardness, and moisture uptake of torrefied wood pellets. Energy Fuels 27(2):967\u2013974","journal-title":"Energy Fuels"},{"key":"3870_CR61","doi-asserted-by":"crossref","first-page":"948","DOI":"10.1016\/j.rser.2010.11.012","volume":"15","author":"AJ Callej\u00f3n-Ferre","year":"2011","unstructured":"Callej\u00f3n-Ferre AJ, Vel\u00e1zquez-Mart\u00ed B, L\u00f3pez-Mart\u00ednez JA, Manzano-Ag\u00fcgliaro F (2011) Greenhouse crop residues: energy potential and models for the prediction of their higher heating value. Renew Sustain Energy Rev 15:948\u2013955","journal-title":"Renew Sustain Energy Rev"},{"issue":"5","key":"3870_CR62","doi-asserted-by":"crossref","first-page":"2262","DOI":"10.1016\/j.rser.2011.02.015","volume":"15","author":"R Saidur","year":"2011","unstructured":"Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S (2011) A review on biomass as a fuel for boilers. Renew Sustain Energy Rev 15(5):2262\u20132289","journal-title":"Renew Sustain Energy Rev"},{"key":"3870_CR63","doi-asserted-by":"crossref","first-page":"1128","DOI":"10.1016\/j.fuel.2010.11.031","volume":"90","author":"C-Y Yin","year":"2011","unstructured":"Yin C-Y (2011) Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 90:1128\u20131132","journal-title":"Fuel"},{"key":"3870_CR64","doi-asserted-by":"crossref","first-page":"405","DOI":"10.1007\/s10845-014-0987-3","volume":"28","author":"R Ziani","year":"2017","unstructured":"Ziani R, Felkaoui A, Zegadi R (2017) Bearing fault diagnosis using multiclass support vector machines with binary particle swarm optimization and regularized Fisher\u2019s criterion. J Intell Manuf 28:405\u2013417","journal-title":"J Intell Manuf"},{"key":"3870_CR65","doi-asserted-by":"crossref","first-page":"1955","DOI":"10.1007\/s00521-015-1842-y","volume":"26","author":"R Leone De","year":"2015","unstructured":"De Leone R, Pietrini M, Giovannelli A (2015) Photovoltaic energy production forecast using support vector regression. Neural Comput Appl 26:1955\u20131962","journal-title":"Neural Comput Appl"},{"key":"3870_CR66","doi-asserted-by":"crossref","first-page":"1177","DOI":"10.1016\/j.mcm.2010.03.017","volume":"52","author":"FJ Cos Juez de","year":"2010","unstructured":"de Cos Juez FJ, Garc\u00eda Nieto PJ, Mart\u00ednez Torres J, Taboada Castro J (2010) Analysis of lead times of metallic components in the aerospace industry through a supported vector machine model. Math Comput Model 52:1177\u20131184","journal-title":"Math Comput Model"},{"key":"3870_CR67","doi-asserted-by":"crossref","DOI":"10.1017\/CBO9780511809682","volume-title":"Kernel methods for pattern analysis","author":"J Shawe-Taylor","year":"2004","unstructured":"Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, New York"},{"key":"3870_CR68","volume-title":"Evolutionary optimization algorithms","author":"D Simon","year":"2013","unstructured":"Simon D (2013) Evolutionary optimization algorithms. Wiley, New York"},{"key":"3870_CR69","volume-title":"Swarm intelligence and bio-inspired computation: theory and applications","author":"X-S Yang","year":"2013","unstructured":"Yang X-S, Cui Z, Xiao R, Gandomi AH, Karamanoglu M (2013) Swarm intelligence and bio-inspired computation: theory and applications. Elsevier, London"},{"key":"3870_CR70","unstructured":"Clerc M (2012) Standard particle swarm optimisation: from 2006 to 2011. Technical report. http:\/\/clerc.maurice.free.fr\/pso\/SPSO_descriptions.pdf . Accessed 23 Sept 2012"},{"key":"3870_CR71","volume-title":"Classification and regression trees. The Wadsworth statistics\/probability series","author":"L Breiman","year":"1984","unstructured":"Breiman L, Friedman J, Olshen RA, Stone CJ (1984) Classification and regression trees. The Wadsworth statistics\/probability series. Wadsworth, Belmont"},{"key":"3870_CR72","volume-title":"C4.5 programs for machine learning","author":"JR Quinlan","year":"1993","unstructured":"Quinlan JR (1993) C4.5 programs for machine learning. Morgan Kaurmann, San Mateo"},{"key":"3870_CR73","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1016\/j.scitotenv.2014.01.001","volume":"476\u2013477","author":"V Rodriguez-Galiano","year":"2014","unstructured":"Rodriguez-Galiano V, Mendes MP, Garcia-Soldado MJ, Chica-Olmo M, Ribeiro L (2014) Predictive modeling of groundwater nitrate pollution using random forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (southern Spain). Sci Total Environ 476\u2013477:189\u2013206","journal-title":"Sci Total Environ"},{"key":"3870_CR74","doi-asserted-by":"crossref","first-page":"212","DOI":"10.1016\/j.cj.2016.01.008","volume":"4","author":"L Wang","year":"2016","unstructured":"Wang L, Zhou X, Zhu X, Dong Z, Guo W (2016) Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. Crop J 4:212\u2013219","journal-title":"Crop J"},{"key":"3870_CR75","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1016\/j.bdr.2017.07.003","volume":"9","author":"R Genuer","year":"2017","unstructured":"Genuer R, Poggi J-M, Tuleau-Malot C, Villa-Vialaneix N (2017) Random forests for big data. Big Data Res 9:28\u201346","journal-title":"Big Data Res"},{"key":"3870_CR76","volume-title":"All of statistics: a concise course in statistical inference","author":"L Wasserman","year":"2003","unstructured":"Wasserman L (2003) All of statistics: a concise course in statistical inference. Springer, New York"},{"key":"3870_CR77","volume-title":"Statistics","author":"D Freedman","year":"2007","unstructured":"Freedman D, Pisani R, Purves R (2007) Statistics. W.W. Norton & Company, New York"},{"issue":"387","key":"3870_CR78","doi-asserted-by":"crossref","first-page":"575","DOI":"10.1080\/01621459.1984.10478083","volume":"79","author":"R Picard","year":"1984","unstructured":"Picard R, Cook D (1984) Cross-validation of regression models. J Am Stat Assoc 79(387):575\u2013583","journal-title":"J Am Stat Assoc"},{"issue":"438","key":"3870_CR79","first-page":"548","volume":"92","author":"B Efron","year":"1997","unstructured":"Efron B, Tibshirani R (1997) Improvements on cross-validation: the.632\u2009+\u2009bootstrap method. J Am Stat Assoc 92(438):548\u2013560","journal-title":"J Am Stat Assoc"},{"key":"3870_CR80","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1961189.1961199","volume":"2","author":"C-C Chang","year":"2011","unstructured":"Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst and Technol 2:1\u201327","journal-title":"ACM Trans Intell Syst and Technol"},{"issue":"1","key":"3870_CR81","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1145\/1656274.1656278","volume":"11","author":"M Hall","year":"2009","unstructured":"Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. ACM SIGKDD Explor Newsl 11(1):10\u201318","journal-title":"ACM SIGKDD Explor Newsl"},{"key":"3870_CR82","volume-title":"Data mining: practical machine learning tools and techniques","author":"IH Witten","year":"2016","unstructured":"Witten IH, Frank E, Hall MA, Pal CJ (2016) Data mining: practical machine learning tools and techniques. Morgan Kaufmann, Amsterdam"},{"key":"3870_CR83","doi-asserted-by":"crossref","DOI":"10.1201\/b14513","volume-title":"Biomass as energy source: resources, systems and applications","author":"E Dahlquist","year":"2013","unstructured":"Dahlquist E (2013) Biomass as energy source: resources, systems and applications. CRC Press, Boca Rat\u00f3n"},{"key":"3870_CR84","doi-asserted-by":"crossref","DOI":"10.1515\/9783110369632","volume-title":"Pyrolisis of biomass","author":"S Wang","year":"2016","unstructured":"Wang S, Luo Z (2016) Pyrolisis of biomass. De Gruyter Ltd, Warsaw"}],"container-title":["Neural Computing and Applications"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s00521-018-3870-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s00521-018-3870-x\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s00521-018-3870-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,11,15]],"date-time":"2020-11-15T05:41:55Z","timestamp":1605418915000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s00521-018-3870-x"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,11,14]]},"references-count":84,"journal-issue":{"issue":"12","published-print":{"date-parts":[[2019,12]]}},"alternative-id":["3870"],"URL":"https:\/\/doi.org\/10.1007\/s00521-018-3870-x","relation":{},"ISSN":["0941-0643","1433-3058"],"issn-type":[{"value":"0941-0643","type":"print"},{"value":"1433-3058","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,11,14]]},"assertion":[{"value":"30 January 2018","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"9 November 2018","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"14 November 2018","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Compliance with ethical standards"}},{"value":"The authors declare no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}