{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,2,2]],"date-time":"2024-02-02T00:35:13Z","timestamp":1706834113439},"reference-count":34,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2024,1,11]],"date-time":"2024-01-11T00:00:00Z","timestamp":1704931200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,11]],"date-time":"2024-01-11T00:00:00Z","timestamp":1704931200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Soft Comput"],"published-print":{"date-parts":[[2024,2]]},"DOI":"10.1007\/s00500-023-09552-4","type":"journal-article","created":{"date-parts":[[2024,1,11]],"date-time":"2024-01-11T06:01:23Z","timestamp":1704952883000},"page":"1957-1969","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Exploring the effect of training-time randomness on the performance of deep neural networks for intrusion detection"],"prefix":"10.1007","volume":"28","author":[{"given":"Marta","family":"Catillo","sequence":"first","affiliation":[]},{"given":"Antonio","family":"Pecchia","sequence":"additional","affiliation":[]},{"given":"Umberto","family":"Villano","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,1,11]]},"reference":[{"issue":"1","key":"9552_CR1","doi-asserted-by":"publisher","DOI":"10.1002\/ett.4150","volume":"32","author":"Z Ahmad","year":"2021","unstructured":"Ahmad Z, Shahid Khan A, Wai Shiang C, Abdullah J, Ahmad F (2021) Network intrusion detection system: a systematic study of machine learning and deep learning approaches. Trans Emerg Telecommun Technol 32(1):e4150","journal-title":"Trans Emerg Telecommun Technol"},{"key":"9552_CR2","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2022.117144","volume":"201","author":"G Andresini","year":"2022","unstructured":"Andresini G, Appice A, Caforio FP, Malerba D, Vessio G (2022) Roulette: a neural attention multi-output model for explainable network intrusion detection. Expert Syst Appl 201:117144","journal-title":"Expert Syst Appl"},{"key":"9552_CR3","doi-asserted-by":"publisher","first-page":"16","DOI":"10.1016\/j.patrec.2022.02.012","volume":"157","author":"Y Aoudni","year":"2022","unstructured":"Aoudni Y, Donald C, Farouk A, Sahay KB, Babu DV, Tripathi V, Dhabliya D (2022) Cloud security based attack detection using transductive learning integrated with hidden Markov model. Pattern Recogn Lett 157:16\u201326","journal-title":"Pattern Recogn Lett"},{"issue":"4","key":"9552_CR4","doi-asserted-by":"publisher","first-page":"5152","DOI":"10.1109\/TNSM.2022.3157344","volume":"19","author":"G Apruzzese","year":"2022","unstructured":"Apruzzese G, Pajola L, Conti M (2022) The cross-evaluation of machine learning-based network intrusion detection systems. IEEE Trans Netw Serv Manag 19(4):5152\u20135169","journal-title":"IEEE Trans Netw Serv Manag"},{"issue":"4","key":"9552_CR5","doi-asserted-by":"publisher","first-page":"3571","DOI":"10.1007\/s11227-020-03410-y","volume":"77","author":"R Atefinia","year":"2021","unstructured":"Atefinia R, Ahmadi M (2021) Network intrusion detection using multi-architectural modular deep neural network. J Supercomput 77(4):3571\u20133593","journal-title":"J Supercomput"},{"key":"9552_CR6","doi-asserted-by":"publisher","DOI":"10.1016\/j.comnet.2021.108399","volume":"199","author":"EM B\u00e5rli","year":"2021","unstructured":"B\u00e5rli EM, Yazidi A, Viedma EH, Haugerud H (2021) DoS and DDoS mitigation using variational autoencoders. Comput Netw 199:108399","journal-title":"Comput Netw"},{"key":"9552_CR7","doi-asserted-by":"publisher","DOI":"10.1016\/j.cose.2021.102341","volume":"108","author":"M Catillo","year":"2021","unstructured":"Catillo M, Pecchia A, Rak M, Villano U (2021) Demystifying the role of public intrusion datasets: a replication study of DoS network traffic data. Comput Secur 108:102341","journal-title":"Comput Secur"},{"key":"9552_CR8","doi-asserted-by":"crossref","unstructured":"Catillo M, Del Vecchio A, Pecchia A, Villano U (2022) Transferability of machine learning models learned from public intrusion detection datasets: the CICIDS2017 case study. Softw Qual J 30:955\u2013981","DOI":"10.1007\/s11219-022-09587-0"},{"key":"9552_CR9","doi-asserted-by":"crossref","unstructured":"Catillo M, Pecchia A, Villano U (2023a) CPS-GUARD: intrusion detection for cyber-physical systems and IoT devices using outlier-aware deep autoencoders. Comput Secur 129:103210","DOI":"10.1016\/j.cose.2023.103210"},{"key":"9552_CR10","doi-asserted-by":"crossref","unstructured":"Catillo M, Pecchia A, Villano U (2023b) Successful intrusion detection with a single deep autoencoder: theory and practice. Softw Qual J 2023:1","DOI":"10.1007\/s11219-023-09636-2"},{"issue":"3","key":"9552_CR11","doi-asserted-by":"publisher","first-page":"15","DOI":"10.1145\/1541880.1541882","volume":"41","author":"V Chandola","year":"2009","unstructured":"Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv 41(3):15","journal-title":"ACM Comput Surv"},{"key":"9552_CR12","doi-asserted-by":"publisher","first-page":"103106","DOI":"10.1016\/j.cose.2023.103106","volume":"127","author":"Bertoli G de Carvalho","year":"2023","unstructured":"de Carvalho Bertoli G, Junior Alves Pereira L, Saotome O, dos Santos AL (2023) Generalizing intrusion detection for heterogeneous networks: a stacked-unsupervised federated learning approach. Comput Secur 127:103106","journal-title":"Comput Secur"},{"key":"9552_CR13","doi-asserted-by":"publisher","DOI":"10.1016\/j.iot.2021.100462","volume":"16","author":"AS Dina","year":"2021","unstructured":"Dina AS, Manivannan D (2021) Intrusion detection based on machine learning techniques in computer networks. Internet Things 16:100462","journal-title":"Internet Things"},{"key":"9552_CR14","doi-asserted-by":"crossref","unstructured":"Engelen G, Rimmer V, Joosen W (2021) Troubleshooting an intrusion detection dataset: the CICIDS2017 case study. In: Proceedings of the security and privacy workshops. IEEE, New York, pp 7\u201312","DOI":"10.1109\/SPW53761.2021.00009"},{"key":"9552_CR15","doi-asserted-by":"crossref","unstructured":"Fellicious C, Weissgerber T, Granitzer M (2020) Effects of random seeds on the accuracy of convolutional neural networks. In: Machine learning, optimization, and data science. Springer, London, pp 93\u2013102","DOI":"10.1007\/978-3-030-64580-9_8"},{"key":"9552_CR16","first-page":"54","volume":"125","author":"R Fisher","year":"1929","unstructured":"Fisher R (1929) Tests of significance in harmonic analysis. Proc R Soc Lond 125:54\u201359","journal-title":"Proc R Soc Lond"},{"key":"9552_CR17","doi-asserted-by":"publisher","first-page":"48","DOI":"10.1016\/j.inffus.2021.02.007","volume":"72","author":"F Folino","year":"2021","unstructured":"Folino F, Folino G, Guarascio M, Pisani F, Pontieri L (2021) On learning effective ensembles of deep neural networks for intrusion detection. Inf Fusion 72:48\u201369","journal-title":"Inf Fusion"},{"key":"9552_CR18","doi-asserted-by":"publisher","first-page":"13059","DOI":"10.1007\/s00500-021-06473-y","volume":"26","author":"V Gowdhaman","year":"2022","unstructured":"Gowdhaman V, Dhanapal R (2022) An intrusion detection system for wireless sensor networks using deep neural network. Soft Comput 26:13059\u201313067","journal-title":"Soft Comput"},{"issue":"1","key":"9552_CR19","doi-asserted-by":"publisher","first-page":"538","DOI":"10.1109\/COMST.2022.3233793","volume":"25","author":"K He","year":"2023","unstructured":"He K, Kim DD, Asghar MR (2023) Adversarial machine learning for network intrusion detection systems: a comprehensive survey. IEEE Commun Surv Tutor 25(1):538\u2013566","journal-title":"IEEE Commun Surv Tutor"},{"key":"9552_CR20","doi-asserted-by":"publisher","first-page":"10651","DOI":"10.1007\/s00500-022-06798-2","volume":"26","author":"M Imran","year":"2022","unstructured":"Imran M, Khan S, Hlavacs H et al (2022) Intrusion detection in networks using cuckoo search optimization. Soft Comput 26:10651\u201310663","journal-title":"Soft Comput"},{"key":"9552_CR21","unstructured":"Izmailov P, Podoprikhin D, Garipov T, Vetrov DP, Wilson AG (2018) Averaging weights leads to wider optima and better generalization. In: Proceedings of the conference on uncertainty in artificial intelligence"},{"key":"9552_CR22","volume-title":"The art of computer systems performance analysis","author":"R Jain","year":"1991","unstructured":"Jain R (1991) The art of computer systems performance analysis. Wiley, New York"},{"key":"9552_CR23","doi-asserted-by":"publisher","first-page":"9731","DOI":"10.1007\/s00500-021-05893-0","volume":"25","author":"G Kocher","year":"2021","unstructured":"Kocher G, Kumar G (2021) Machine learning and deep learning methods for intrusion detection systems: recent developments and challenges. Soft Comput 25:9731\u20139763","journal-title":"Soft Comput"},{"issue":"3","key":"9552_CR24","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3506695","volume":"31","author":"L Liao","year":"2022","unstructured":"Liao L, Li H, Shang W, Ma L (2022) An empirical study of the impact of hyperparameter tuning and model optimization on the performance properties of deep neural networks. ACM Trans Softw Eng Methodol 31(3):1","journal-title":"ACM Trans Softw Eng Methodol"},{"key":"9552_CR25","doi-asserted-by":"publisher","first-page":"411","DOI":"10.1016\/j.cose.2017.11.004","volume":"73","author":"G Maci\u00e1-Fern\u00e1ndez","year":"2017","unstructured":"Maci\u00e1-Fern\u00e1ndez G, Camacho J, Mag\u00e1n-Carri\u00f3n R, Garc\u00eda-Teodoro P, Ther\u00f3n R (2017) UGR\u201916: a new dataset for the evaluation of cyclostationarity-based network IDSs. Comput Secur 73:411\u2013424","journal-title":"Comput Secur"},{"key":"9552_CR26","doi-asserted-by":"crossref","unstructured":"Madhyastha PS, Batra D (2019) On model stability as a function of random seed. In: CoNLL, pp 929\u2013939","DOI":"10.18653\/v1\/K19-1087"},{"key":"9552_CR27","doi-asserted-by":"crossref","unstructured":"Moustafa N, Slay J (2015) UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In: Proceedings of the military communications and information systems conference, pp 1\u20136","DOI":"10.1109\/MilCIS.2015.7348942"},{"key":"9552_CR28","doi-asserted-by":"crossref","unstructured":"Sharafaldin I, Lashkari AH, Ghorbani AA (2018) Toward generating a new intrusion detection dataset and intrusion traffic characterization. In: Proceedings of the international conference on information systems security and privacy. SciTePress, pp 108\u2013116","DOI":"10.5220\/0006639801080116"},{"issue":"2","key":"9552_CR29","doi-asserted-by":"publisher","first-page":"95","DOI":"10.1016\/j.icte.2018.04.003","volume":"4","author":"A Shenfield","year":"2018","unstructured":"Shenfield A, Day D, Ayesh A (2018) Intelligent intrusion detection systems using artificial neural networks. ICT Express 4(2):95\u201399","journal-title":"ICT Express"},{"issue":"1","key":"9552_CR30","doi-asserted-by":"publisher","first-page":"12","DOI":"10.1007\/s10922-021-09615-7","volume":"30","author":"M Verkerken","year":"2021","unstructured":"Verkerken M, D\u2019Hooge L, Wauters T, Volckaert B, De Turck F (2021) Towards model generalization for intrusion detection: unsupervised machine learning techniques. J Netw Syst Manag 30(1):12","journal-title":"J Netw Syst Manag"},{"key":"9552_CR31","first-page":"3371","volume":"11","author":"P Vincent","year":"2010","unstructured":"Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11:3371\u20133408","journal-title":"J Mach Learn Res"},{"key":"9552_CR32","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4615-4625-2","volume-title":"Experimentation in software engineering: an introduction","author":"C Wohlin","year":"2000","unstructured":"Wohlin C, Runeson P, H\u00f6st M, Ohlsson MC, Regnell B, Wessl\u00e9n A (2000) Experimentation in software engineering: an introduction. Kluwer Academic, London"},{"key":"9552_CR33","doi-asserted-by":"publisher","first-page":"46","DOI":"10.1016\/j.neucom.2022.04.061","volume":"493","author":"L Zhang","year":"2022","unstructured":"Zhang L, Lu X, Chen Z, Liu T, Chen Q, Li Z (2022) Adaptive deep learning for network intrusion detection by risk analysis. Neurocomputing 493:46\u201358","journal-title":"Neurocomputing"},{"key":"9552_CR34","doi-asserted-by":"publisher","DOI":"10.1016\/j.jnca.2021.103106","volume":"189","author":"T Zoppi","year":"2021","unstructured":"Zoppi T, Ceccarelli A (2021) Prepare for trouble and make it double! Supervised\u2013unsupervised stacking for anomaly-based intrusion detection. J Netw Comput Appl 189:103106","journal-title":"J Netw Comput Appl"}],"container-title":["Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00500-023-09552-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00500-023-09552-4\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00500-023-09552-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T05:25:26Z","timestamp":1706765126000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00500-023-09552-4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,1,11]]},"references-count":34,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2024,2]]}},"alternative-id":["9552"],"URL":"https:\/\/doi.org\/10.1007\/s00500-023-09552-4","relation":{},"ISSN":["1432-7643","1433-7479"],"issn-type":[{"value":"1432-7643","type":"print"},{"value":"1433-7479","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,1,11]]},"assertion":[{"value":"3 December 2023","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"11 January 2024","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors have no conflict of interest, and no financial or non-financial interests to disclose.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}