{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:14:43Z","timestamp":1728177283660},"reference-count":75,"publisher":"Springer Science and Business Media LLC","issue":"9","license":[{"start":{"date-parts":[[2023,3,8]],"date-time":"2023-03-08T00:00:00Z","timestamp":1678233600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,3,8]],"date-time":"2023-03-08T00:00:00Z","timestamp":1678233600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Soft Comput"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1007\/s00500-023-07956-w","type":"journal-article","created":{"date-parts":[[2023,3,8]],"date-time":"2023-03-08T02:02:30Z","timestamp":1678240950000},"page":"5603-5620","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Class-biased sarcasm detection using BiLSTM variational autoencoder-based synthetic oversampling"],"prefix":"10.1007","volume":"27","author":[{"given":"Sankhadeep","family":"Chatterjee","sequence":"first","affiliation":[]},{"given":"Saranya","family":"Bhattacharjee","sequence":"additional","affiliation":[]},{"given":"Kushankur","family":"Ghosh","sequence":"additional","affiliation":[]},{"given":"Asit Kumar","family":"Das","sequence":"additional","affiliation":[]},{"given":"Soumen","family":"Banerjee","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,3,8]]},"reference":[{"key":"7956_CR1","doi-asserted-by":"crossref","unstructured":"Abercrombie G, Hovy D (2016) Putting sarcasm detection into context: the effects of class imbalance and manual labelling on supervised machine classification of twitter conversations. In: Proceedings of the ACL 2016 student research workshop, pp 107\u2013113","DOI":"10.18653\/v1\/P16-3016"},{"key":"7956_CR2","doi-asserted-by":"publisher","first-page":"574","DOI":"10.1609\/icwsm.v9i1.14655","volume":"9","author":"D Bamman","year":"2015","unstructured":"Bamman D, Smith N (2015) Contextualized sarcasm detection on twitter. Proc Int AAAI Conf Web Soc Media 9:574\u2013577","journal-title":"Proc Int AAAI Conf Web Soc Media"},{"issue":"47","key":"7956_CR3","doi-asserted-by":"publisher","first-page":"35995","DOI":"10.1007\/s11042-020-09138-4","volume":"79","author":"A Banerjee","year":"2020","unstructured":"Banerjee A, Bhattacharjee M, Ghosh K, Chatterjee S (2020) Synthetic minority oversampling in addressing imbalanced sarcasm detection in social media. Multimedia Tools Appl 79(47):35995\u201336031","journal-title":"Multimedia Tools Appl"},{"key":"7956_CR4","unstructured":"Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13(2)"},{"key":"7956_CR5","doi-asserted-by":"crossref","unstructured":"Bharti SK, Babu KS, Jena SK (2015) Parsing-based sarcasm sentiment recognition in twitter data. In: 2015 IEEE\/ACM international conference on advances in social networks analysis and mining (ASONAM), pp 1373\u20131380. IEEE","DOI":"10.1145\/2808797.2808910"},{"key":"7956_CR6","doi-asserted-by":"crossref","unstructured":"Bowman SR, Vilnis L, Vinyals O, Dai AM, Jozefowicz R, Bengio S (2015) Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349","DOI":"10.18653\/v1\/K16-1002"},{"issue":"3","key":"7956_CR7","doi-asserted-by":"publisher","first-page":"664","DOI":"10.1007\/s10489-011-0287-y","volume":"36","author":"C Bunkhumpornpat","year":"2012","unstructured":"Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C (2012) Dbsmote: density-based synthetic minority over-sampling technique. Appl Intell 36(3):664\u2013684","journal-title":"Appl Intell"},{"key":"7956_CR8","doi-asserted-by":"crossref","unstructured":"Chaudhari P, Chandankhede C (2017) Literature survey of sarcasm detection. In 2017 International conference on wireless communications, signal processing and networking (WiSPNET), pp 2041\u20132046. IEEE","DOI":"10.1109\/WiSPNET.2017.8300120"},{"key":"7956_CR9","doi-asserted-by":"crossref","unstructured":"Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic minority over-sampling technique. J Artif Intell Res 16:321\u2013357","DOI":"10.1613\/jair.953"},{"key":"7956_CR10","first-page":"2892","volume":"2020","author":"M Cheng","year":"2020","unstructured":"Cheng M, Nazarian S, Bogdan P (2020) Vroc: variational autoencoder-aided multi-task rumor classifier based on text. Proc Web Conf 2020:2892\u20132898","journal-title":"Proc Web Conf"},{"key":"7956_CR11","doi-asserted-by":"crossref","unstructured":"Dablain D, Krawczyk B, Chawla NV (2022) Deepsmote: fusing deep learning and smote for imbalanced data. IEEE Trans Neural Netw Learn Syst","DOI":"10.1109\/TNNLS.2021.3136503"},{"key":"7956_CR12","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.ins.2018.06.056","volume":"465","author":"G Douzas","year":"2018","unstructured":"Douzas G, Bacao F, Last F (2018) Improving imbalanced learning through a heuristic oversampling method based on k-means and smote. Inf Sci 465:1\u201320","journal-title":"Inf Sci"},{"key":"7956_CR13","unstructured":"Dozat T (2016) Incorporating nesterov momentum into adam"},{"key":"7956_CR14","doi-asserted-by":"publisher","first-page":"48501","DOI":"10.1109\/ACCESS.2021.3068323","volume":"9","author":"CI Eke","year":"2021","unstructured":"Eke CI, Norman AA, Shuib L (2021) Context-based feature technique for sarcasm identification in benchmark datasets using deep learning and bert model. IEEE Access 9:48501\u201348518","journal-title":"IEEE Access"},{"key":"7956_CR15","doi-asserted-by":"crossref","unstructured":"Ertekin S (2013) Adaptive oversampling for imbalanced data classification. Inf Sci Syst 2013, pp 261\u2013269. Springer","DOI":"10.1007\/978-3-319-01604-7_26"},{"key":"7956_CR16","first-page":"553","volume":"2021","author":"H Fei","year":"2021","unstructured":"Fei H, Ren Y, Shengqiong W, Li B, Ji D (2021) Latent target-opinion as prior for document-level sentiment classification: a variational approach from fine-grained perspective. Proc Web Conf 2021:553\u2013564","journal-title":"Proc Web Conf"},{"key":"7956_CR17","doi-asserted-by":"publisher","first-page":"652","DOI":"10.1016\/j.jbusres.2020.03.001","volume":"124","author":"E Gentina","year":"2021","unstructured":"Gentina E, Chen R, Yang Z (2021) Development of theory of mind on online social networks: evidence from facebook, twitter, instagram, and snapchat. J Bus Res 124:652\u2013666","journal-title":"J Bus Res"},{"key":"7956_CR18","doi-asserted-by":"crossref","unstructured":"Ghosh K, Bellinger C, Corizzo R, Krawczyk B, Japkowicz N (2021) On the combined effect of class imbalance and concept complexity in deep learning. In: 2021 IEEE international conference on big data (big data), pp 4859\u20134868. IEEE","DOI":"10.1109\/BigData52589.2021.9672056"},{"issue":"1\u20132","key":"7956_CR19","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1080\/10926488.2000.9678862","volume":"15","author":"Raymond W Gibbs","year":"2000","unstructured":"Gibbs Raymond W (2000) Irony in talk among friends. Metaphor Symbol 15(1\u20132):5\u201327","journal-title":"Metaphor Symbol"},{"issue":"02","key":"7956_CR20","doi-asserted-by":"publisher","first-page":"139","DOI":"10.1142\/S0218194019500074","volume":"29","author":"S Guo","year":"2019","unstructured":"Guo S, Chen R, Li H, Zhang T, Liu Y (2019) Identify severity bug report with distribution imbalance by cr-smote and elm. Int J Softw Eng Knowl Eng 29(02):139\u2013175","journal-title":"Int J Softw Eng Knowl Eng"},{"key":"7956_CR21","doi-asserted-by":"crossref","unstructured":"Guo X, Li B, Yu H, Miao C (2021) Latent-optimized adversarial neural transfer for sarcasm detection. arXiv preprint arXiv:2104.09261","DOI":"10.18653\/v1\/2021.naacl-main.425"},{"key":"7956_CR22","doi-asserted-by":"crossref","unstructured":"Han H, Wang W-Y, Mao B-H (2005) Borderline-smote: a new over-sampling method in imbalanced data sets learning. In: International conference on intelligent computing, pp 878\u2013887. Springer","DOI":"10.1007\/11538059_91"},{"key":"7956_CR23","unstructured":"Hazarika D, Poria S, Gorantla S, Cambria E, Zimmermann R, Mihalcea R (2018) Cascade: contextual sarcasm detection in online discussion forums. arXiv preprint arXiv:1805.06413"},{"key":"7956_CR24","unstructured":"He H, Bai Y, Garcia EA, Li S (2008) Adasyn: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence), pp 1322\u20131328. IEEE"},{"issue":"5","key":"7956_CR25","doi-asserted-by":"publisher","first-page":"851","DOI":"10.3390\/math8050851","volume":"8","author":"Bi-Min Hsu","year":"2020","unstructured":"Hsu Bi-Min (2020) Comparison of supervised classification models on textual data. Mathematics 8(5):851","journal-title":"Mathematics"},{"key":"7956_CR26","doi-asserted-by":"crossref","unstructured":"Huang C, Trabelsi A, Qin X, Farruque N, Mou L, Zaiane OR (2021) Seq2emo: a sequence to multi-label emotion classification model. In: Proceedings of the 2021 conference of the North American chapter of the association for computational linguistics: human language technologies, pp 4717\u20134724","DOI":"10.18653\/v1\/2021.naacl-main.375"},{"key":"7956_CR27","doi-asserted-by":"crossref","unstructured":"Hwang K, Sung W (2017) Character-level language modeling with hierarchical recurrent neural networks. In: 2017 IEEE international conference on acoustics, speech and signal processing (icassp), pp 5720\u20135724. IEEE","DOI":"10.1109\/ICASSP.2017.7953252"},{"issue":"17","key":"7956_CR28","doi-asserted-by":"publisher","first-page":"5841","DOI":"10.3390\/app10175841","volume":"10","author":"B Jang","year":"2020","unstructured":"Jang B, Kim M, Harerimana G, Kang S, Kim JW (2020) Bi-lstm model to increase accuracy in text classification: combining word2vec cnn and attention mechanism. Appl Sci 10(17):5841","journal-title":"Appl Sci"},{"issue":"5","key":"7956_CR29","doi-asserted-by":"publisher","first-page":"429","DOI":"10.3233\/IDA-2002-6504","volume":"6","author":"N Japkowicz","year":"2002","unstructured":"Japkowicz N, Stephen S (2002) The class imbalance problem: a systematic study. Intell Data Anal 6(5):429\u2013449","journal-title":"Intell Data Anal"},{"key":"7956_CR30","doi-asserted-by":"crossref","unstructured":"Khotijah S, Tirtawangsa J, Suryani AA (2020) Using lstm for context based approach of sarcasm detection in twitter. In: Proceedings of the 11th international conference on advances in information technology, pp 1\u20137","DOI":"10.1145\/3406601.3406624"},{"key":"7956_CR31","doi-asserted-by":"crossref","unstructured":"Kim Y, Geng J, Ney H (2019) Improving unsupervised word-by-word translation with language model and denoising autoencoder. arXiv preprint arXiv:1901.01590","DOI":"10.18653\/v1\/D18-1101"},{"issue":"15","key":"7956_CR32","doi-asserted-by":"publisher","first-page":"9731","DOI":"10.1007\/s00500-021-05893-0","volume":"25","author":"G Kocher","year":"2021","unstructured":"Kocher G, Kumar G (2021) Machine learning and deep learning methods for intrusion detection systems: recent developments and challenges. Soft Comput 25(15):9731\u20139763","journal-title":"Soft Comput"},{"key":"7956_CR33","doi-asserted-by":"crossref","unstructured":"Kubat M, Holte R, Matwin S (1997) Learning when negative examples abound. In: European conference on machine learning, pp 146\u2013153. Springer","DOI":"10.1007\/3-540-62858-4_79"},{"key":"7956_CR34","unstructured":"Kubat M, Matwin S et al. (1997) Addressing the curse of imbalanced training sets: one-sided selection. In: Icml, vol 97, p 179. Citeseer"},{"key":"7956_CR35","doi-asserted-by":"publisher","first-page":"6388","DOI":"10.1109\/ACCESS.2019.2963630","volume":"8","author":"A Kumar","year":"2020","unstructured":"Kumar A, Narapareddy VT, Srikanth VA, Malapati A, Neti LBM (2020) Sarcasm detection using multi-head attention based bidirectional lstm. IEEE Access 8:6388\u20136397","journal-title":"IEEE Access"},{"key":"7956_CR36","doi-asserted-by":"crossref","unstructured":"Kumar A, Garg G (2019) Empirical study of shallow and deep learning models for sarcasm detection using context in benchmark datasets. J Ambient Intell Human Comput, pp 1\u201316","DOI":"10.1007\/s12652-019-01419-7"},{"issue":"2","key":"7956_CR37","doi-asserted-by":"publisher","first-page":"556","DOI":"10.1109\/TCSS.2020.2980007","volume":"7","author":"L Li","year":"2020","unstructured":"Li L, Zhang Q, Wang X, Zhang J, Wang T, Gao Tian-Lu, Duan Wei, Tsoi Kelvin Kam-fai, Wang Fei-Yue (2020) Characterizing the propagation of situational information in social media during covid-19 epidemic: a case study on weibo. IEEE Trans Comput Soc Syst 7(2):556\u2013562","journal-title":"IEEE Trans Comput Soc Syst"},{"key":"7956_CR38","doi-asserted-by":"publisher","first-page":"105845","DOI":"10.1016\/j.knosys.2020.105845","volume":"196","author":"XW Liang","year":"2020","unstructured":"Liang XW, Jiang AP, Li T, Xue YY, Wang GT (2020) Lr-smote-an improved unbalanced data set oversampling based on k-means and svm. Knowl Based Syst 196:105845","journal-title":"Knowl Based Syst"},{"key":"7956_CR39","unstructured":"Li Z, Han J, Li Q et al. (2020) On the curse of memory in recurrent neural networks: approximation and optimization analysis. arXiv preprint arXiv:2009.07799"},{"key":"7956_CR40","doi-asserted-by":"crossref","unstructured":"Li R, Li X, Lin C, Collinson M, Mao R (2019) A stable variational autoencoder for text modelling. arXiv preprint arXiv:1911.05343","DOI":"10.18653\/v1\/W19-8673"},{"key":"7956_CR41","doi-asserted-by":"publisher","first-page":"325","DOI":"10.1016\/j.neucom.2019.01.078","volume":"337","author":"G Liu","year":"2019","unstructured":"Liu G, Guo J (2019) Bidirectional lstm with attention mechanism and convolutional layer for text classification. Neurocomputing 337:325\u2013338","journal-title":"Neurocomputing"},{"key":"7956_CR42","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1016\/j.neucom.2020.04.084","volume":"403","author":"F Liu","year":"2020","unstructured":"Liu F, Zheng L, Zheng J (2020) Hienn-dwe: a hierarchical neural network with dynamic word embeddings for document level sentiment classification. Neurocomputing 403:21\u201332","journal-title":"Neurocomputing"},{"key":"7956_CR43","doi-asserted-by":"crossref","unstructured":"Liu P, Chen W, Ou G, Wang T, Yang D, Lei K (2014) Sarcasm detection in social media based on imbalanced classification. In: International conference on web-age information management, pp 459\u2013471. Springer","DOI":"10.1007\/978-3-319-08010-9_49"},{"key":"7956_CR44","doi-asserted-by":"crossref","unstructured":"Liu L, Priestley JL, Zhou Y, Ray HE, Han M (2019) A2text-net: A novel deep neural network for sarcasm detection. In: 2019 IEEE first international conference on cognitive machine intelligence (CogMI), pp 118\u2013126. IEEE","DOI":"10.1109\/CogMI48466.2019.00025"},{"issue":"1","key":"7956_CR45","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s12859-017-1578-z","volume":"18","author":"L Ma","year":"2017","unstructured":"Ma L, Fan S (2017) Cure-smote algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests. BMC Bioinf 18(1):1\u201318","journal-title":"BMC Bioinf"},{"key":"7956_CR46","doi-asserted-by":"crossref","unstructured":"Maity S, Mandal RP, Bhattacharjee S, Chatterjee S (2022) Variational autoencoder-based imbalanced alzheimer detection using brain mri images. In: Proceedings of international conference on computational intelligence, data science and cloud computing: IEM-ICDC 2021, pp 165\u2013178. Springer","DOI":"10.1007\/978-981-19-1657-1_14"},{"issue":"3","key":"7956_CR47","doi-asserted-by":"publisher","first-page":"38","DOI":"10.1109\/MIS.2019.2904691","volume":"34","author":"Navonil Majumder","year":"2019","unstructured":"Majumder Navonil, Poria Soujanya, Peng Haiyun, Chhaya Niyati, Cambria Erik, Gelbukh Alexander (2019) Sentiment and sarcasm classification with multitask learning. IEEE Intell Syst 34(3):38\u201343","journal-title":"IEEE Intell Syst"},{"key":"7956_CR48","doi-asserted-by":"crossref","unstructured":"Marchi E, Vesperini F, Eyben F, Squartini S, Schuller B (2015) A novel approach for automatic acoustic novelty detection using a denoising autoencoder with bidirectional lstm neural networks. In: 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 1996\u20132000. IEEE","DOI":"10.1109\/ICASSP.2015.7178320"},{"key":"7956_CR49","doi-asserted-by":"crossref","unstructured":"Mukherjee S, Bala PK (2017) Sarcasm detection in microblogs using na\u00efve bayes and fuzzy clustering. Technol Soc 48:19\u201327","DOI":"10.1016\/j.techsoc.2016.10.003"},{"key":"7956_CR50","doi-asserted-by":"crossref","unstructured":"Ning Q, Zhao X, Ma Z (2021) A novel method for identification of glutarylation sites combining borderline-smote with tomek links technique in imbalanced data. IEEE\/ACM Trans Comput Biol Bioinf","DOI":"10.1109\/TCBB.2021.3095482"},{"key":"7956_CR51","first-page":"2825","volume":"12","author":"F Pedregosa","year":"2011","unstructured":"Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825\u20132830","journal-title":"J Mach Learn Res"},{"key":"7956_CR52","doi-asserted-by":"crossref","unstructured":"Prokhorov V, Shareghi E, Li Y, Pilehvar MT, Collier N (2019) On the importance of the kullback-leibler divergence term in variational autoencoders for text generation. arXiv preprint arXiv:1909.13668","DOI":"10.18653\/v1\/D19-5612"},{"key":"7956_CR53","doi-asserted-by":"crossref","unstructured":"Rajadesingan A, Zafarani R, Liu H (2015) Sarcasm detection on twitter: a behavioral modeling approach. In: Proceedings of the eighth ACM international conference on web search and data mining, pp 97\u2013106","DOI":"10.1145\/2684822.2685316"},{"key":"7956_CR54","doi-asserted-by":"publisher","first-page":"320","DOI":"10.1016\/j.neucom.2020.03.081","volume":"401","author":"L Ren","year":"2020","unstructured":"Ren L, Bo X, Lin H, Liu X, Yang L (2020) Sarcasm detection with sentiment semantics enhanced multi-level memory network. Neurocomputing 401:320\u2013326","journal-title":"Neurocomputing"},{"key":"7956_CR55","doi-asserted-by":"crossref","unstructured":"Ruz GA, Henr\u00edquez PA, Mascareno A (2020) Sentiment analysis of twitter data during critical events through bayesian networks classifiers. Future Generation Comput Syst 106:92\u2013104","DOI":"10.1016\/j.future.2020.01.005"},{"key":"7956_CR56","doi-asserted-by":"publisher","first-page":"184","DOI":"10.1016\/j.ins.2014.08.051","volume":"291","author":"J S\u00e1ez","year":"2015","unstructured":"S\u00e1ez J, Luengo J, Stefanowski J, Herrera F (2015) Smote-ipf: Addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering. Inf Sci 291:184\u2013203","journal-title":"Inf Sci"},{"key":"7956_CR57","unstructured":"Salehinejad H, Sankar S, Barfett J, Colak E, Valaee S (2017) Recent advances in recurrent neural networks. arXiv preprint arXiv:1801.01078"},{"issue":"5","key":"7956_CR58","doi-asserted-by":"publisher","first-page":"578","DOI":"10.1177\/1470785320921779","volume":"62","author":"SM Sarsam","year":"2020","unstructured":"Sarsam SM, Al-Samarraie H, Alzahrani AI, Wright B (2020) Sarcasm detection using machine learning algorithms in twitter: a systematic review. Int J Market Res 62(5):578\u2013598","journal-title":"Int J Market Res"},{"key":"7956_CR59","doi-asserted-by":"publisher","DOI":"10.1016\/j.osnem.2020.100104","volume":"22","author":"GK Shahi","year":"2021","unstructured":"Shahi GK, Dirkson A, Majchrzak TA (2021) An exploratory study of covid-19 misinformation on twitter. Online Social Netw Media 22:100104","journal-title":"Online Social Netw Media"},{"key":"7956_CR60","doi-asserted-by":"crossref","unstructured":"Shah B, Shah M (2021) A survey on machine learning and deep learning based approaches for sarcasm identification in social media. Data Sci Intell Appl, pp 247\u2013259. Springer","DOI":"10.1007\/978-981-15-4474-3_29"},{"key":"7956_CR61","unstructured":"Shen T, Mueller J, Barzilay R, Jaakkola T (2020) Educating text autoencoders: Latent representation guidance via denoising. In: International conference on machine learning, pp 8719\u20138729. PMLR"},{"key":"7956_CR62","doi-asserted-by":"publisher","first-page":"104814","DOI":"10.1016\/j.knosys.2019.06.022","volume":"187","author":"Raghuwanshi Bhagat Singh","year":"2020","unstructured":"Singh Raghuwanshi Bhagat, Sanyam Shukla (2020) Smote based class-specific extreme learning machine for imbalanced learning. Knowledge-Based Systems 187:104814","journal-title":"Knowledge-Based Systems"},{"issue":"5","key":"7956_CR63","doi-asserted-by":"publisher","first-page":"1067","DOI":"10.1007\/s10796-020-10031-6","volume":"22","author":"S Smiti","year":"2020","unstructured":"Smiti S, Soui M (2020) Bankruptcy prediction using deep learning approach based on borderline smote. Inf Syst Front 22(5):1067\u20131083","journal-title":"Inf Syst Front"},{"key":"7956_CR64","doi-asserted-by":"crossref","unstructured":"Suhaimin MSM, Hijazi MHA, Alfred R, Coenen F (2017) Natural language processing based features for sarcasm detection: an investigation using bilingual social media texts. In: 2017 8th International conference on information technology (ICIT), pp 703\u2013709. IEEE","DOI":"10.1109\/ICITECH.2017.8079931"},{"key":"7956_CR65","doi-asserted-by":"publisher","first-page":"128","DOI":"10.1016\/j.inffus.2019.07.006","volume":"54","author":"J Sun","year":"2020","unstructured":"Sun J, Li H, Fujita H, Binbin F, Ai W (2020) Class-imbalanced dynamic financial distress prediction based on adaboost-svm ensemble combined with smote and time weighting. Inf Fusion 54:128\u2013144","journal-title":"Inf Fusion"},{"key":"7956_CR66","doi-asserted-by":"crossref","unstructured":"Wang H-Y (2008) Combination approach of smote and biased-svm for imbalanced datasets. In: 2008 IEEE international joint conference on neural networks (IEEE World Congress on Computational Intelligence), pp 228\u2013231. IEEE,","DOI":"10.1109\/IJCNN.2008.4633794"},{"issue":"7","key":"7956_CR67","doi-asserted-by":"publisher","first-page":"5731","DOI":"10.1007\/s10462-022-10144-1","volume":"55","author":"M Wankhade","year":"2022","unstructured":"Wankhade M, Rao ACS, Kulkarni C (2022) A survey on sentiment analysis methods, applications, and challenges. Artif Intell Rev 55(7):5731-5780","journal-title":"Artif Intell Rev"},{"key":"7956_CR68","doi-asserted-by":"publisher","DOI":"10.1016\/j.jbi.2020.103465","volume":"107","author":"Z Xu","year":"2020","unstructured":"Xu Z, Shen D, Nie T, Kou Y (2020) A hybrid sampling algorithm combining m-smote and enn based on random forest for medical imbalanced data. J Biomed Inf 107:103465","journal-title":"J Biomed Inf"},{"key":"7956_CR69","doi-asserted-by":"publisher","first-page":"574","DOI":"10.1016\/j.ins.2021.02.056","volume":"572","author":"Z Xu","year":"2021","unstructured":"Xu Z, Shen D, Nie T, Kou Y, Yin N, Han X (2021) A cluster-based oversampling algorithm combining smote and k-means for imbalanced medical data. Inf Sci 572:574\u2013589","journal-title":"Inf Sci"},{"key":"7956_CR70","doi-asserted-by":"crossref","unstructured":"Xu W, Sun H, Deng C, Tan Y(2017) Variational autoencoder for semi-supervised text classification. In: Thirty-first AAAI conference on artificial intelligence","DOI":"10.1609\/aaai.v31i1.10966"},{"key":"7956_CR71","unstructured":"Yang Z, Hu Z, Salakhutdinov R, Berg-Kirkpatrick T (2017) Improved variational autoencoders for text modeling using dilated convolutions. In: International conference on machine learning, pp 3881\u20133890. PMLR"},{"issue":"12","key":"7956_CR72","doi-asserted-by":"publisher","first-page":"3696","DOI":"10.1109\/TFUZZ.2021.3072492","volume":"29","author":"Y Zhang","year":"2021","unstructured":"Zhang Y, Liu Y, Li Q, Tiwari P, Wang B, Li Y, Pandey HM, Zhang P, Song D (2021) Cfn: a complex-valued fuzzy network for sarcasm detection in conversations. IEEE Trans Fuzzy Syst 29(12):3696\u20133710","journal-title":"IEEE Trans Fuzzy Syst"},{"key":"7956_CR73","doi-asserted-by":"crossref","unstructured":"Zhang J, Li X (2017) Phishing detection method based on borderline-smote deep belief network. In: International conference on security, privacy and anonymity in computation, communication and storage, pp 45\u201353. Springer","DOI":"10.1007\/978-3-319-72395-2_5"},{"key":"7956_CR74","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2020.106087","volume":"203","author":"J Zhao","year":"2020","unstructured":"Zhao J, Jin J, Chen S, Ruifeng Z, Yu B, Liu Q (2020) A weighted hybrid ensemble method for classifying imbalanced data. Knowl Based Syst 203:106087","journal-title":"Knowl Based Syst"},{"issue":"9","key":"7956_CR75","doi-asserted-by":"publisher","first-page":"1652","DOI":"10.1109\/TKDE.2018.2807840","volume":"30","author":"X Zheng","year":"2018","unstructured":"Zheng X, Han J, Sun A (2018) A survey of location prediction on twitter. IEEE Trans Knowl Data Eng 30(9):1652\u20131671","journal-title":"IEEE Trans Knowl Data Eng"}],"updated-by":[{"updated":{"date-parts":[[2023,3,27]],"date-time":"2023-03-27T00:00:00Z","timestamp":1679875200000},"DOI":"10.1007\/s00500-023-08045-8","type":"correction","label":"Correction"}],"container-title":["Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00500-023-07956-w.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00500-023-07956-w\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00500-023-07956-w.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,4,10]],"date-time":"2023-04-10T12:17:14Z","timestamp":1681129034000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00500-023-07956-w"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3,8]]},"references-count":75,"journal-issue":{"issue":"9","published-print":{"date-parts":[[2023,5]]}},"alternative-id":["7956"],"URL":"https:\/\/doi.org\/10.1007\/s00500-023-07956-w","relation":{},"ISSN":["1432-7643","1433-7479"],"issn-type":[{"value":"1432-7643","type":"print"},{"value":"1433-7479","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,3,8]]},"assertion":[{"value":"18 February 2023","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"8 March 2023","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"27 March 2023","order":3,"name":"change_date","label":"Change Date","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"Correction","order":4,"name":"change_type","label":"Change Type","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"A Correction to this paper has been published:","order":5,"name":"change_details","label":"Change Details","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"https:\/\/doi.org\/10.1007\/s00500-023-08045-8","URL":"https:\/\/doi.org\/10.1007\/s00500-023-08045-8","order":6,"name":"change_details","label":"Change Details","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors have no competing interests to declare that are relevant to the content of this article.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}