{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,14]],"date-time":"2024-10-14T04:10:03Z","timestamp":1728879003013},"reference-count":41,"publisher":"Springer Science and Business Media LLC","issue":"9","license":[{"start":{"date-parts":[[2023,2,12]],"date-time":"2023-02-12T00:00:00Z","timestamp":1676160000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,2,12]],"date-time":"2023-02-12T00:00:00Z","timestamp":1676160000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100001824","name":"Czech Science Foundation","doi-asserted-by":"crossref","award":["P403-18-04735S"],"id":[{"id":"10.13039\/501100001824","id-type":"DOI","asserted-by":"crossref"}]},{"name":"Center for Foundations of Modern Computer Science","award":["UNCE\/SCI\/004"]},{"DOI":"10.13039\/501100001824","name":"Czech Science Foundation","doi-asserted-by":"crossref","award":["P403-18-04735S"],"id":[{"id":"10.13039\/501100001824","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["72201052"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["N2204017"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Soft Comput"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1007\/s00500-023-07860-3","type":"journal-article","created":{"date-parts":[[2023,2,12]],"date-time":"2023-02-12T03:03:02Z","timestamp":1676170982000},"page":"5567-5586","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Sparse L1-norm quadratic surface support vector machine with Universum data"],"prefix":"10.1007","volume":"27","author":[{"given":"Hossein","family":"Moosaei","sequence":"first","affiliation":[]},{"given":"Ahmad","family":"Mousavi","sequence":"additional","affiliation":[]},{"given":"Milan","family":"Hlad\u00edk","sequence":"additional","affiliation":[]},{"given":"Zheming","family":"Gao","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,2,12]]},"reference":[{"issue":"1","key":"7860_CR1","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/s10479-020-03575-y","volume":"297","author":"E Akyildirim","year":"2021","unstructured":"Akyildirim E, Goncu A, Sensoy A (2021) Prediction of cryptocurrency returns using machine learning. Ann Oper Res 297(1):3\u201336","journal-title":"Ann Oper Res"},{"key":"7860_CR2","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1016\/j.cmpb.2017.01.004","volume":"141","author":"Z Arabasadi","year":"2017","unstructured":"Arabasadi Z, Alizadehsani R, Roshanzamir M, Moosaei H, Yarifard AA (2017) Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm. Comput Methods Programs Biomed 141:19\u201326","journal-title":"Comput Methods Programs Biomed"},{"issue":"4","key":"7860_CR3","doi-asserted-by":"publisher","first-page":"850","DOI":"10.1007\/s10878-015-9848-z","volume":"30","author":"Y Bai","year":"2015","unstructured":"Bai Y, Han X, Chen T, Yu H (2015) Quadratic kernel-free least squares support vector machine for target diseases classification. J Comb Optim 30(4):850\u2013870","journal-title":"J Comb Optim"},{"issue":"6","key":"7860_CR4","doi-asserted-by":"publisher","first-page":"1763","DOI":"10.1007\/s10489-019-01618-x","volume":"50","author":"F Bazikar","year":"2020","unstructured":"Bazikar F, Ketabchi S, Moosaei H (2020) DC programming and DCA for parametric-margin $$\\nu $$-support vector machine. Appl Intell 50(6):1763\u20131774","journal-title":"Appl Intell"},{"issue":"20","key":"7860_CR5","doi-asserted-by":"publisher","first-page":"6183","DOI":"10.1007\/s00500-016-2176-0","volume":"21","author":"J Calvo-Zaragoza","year":"2017","unstructured":"Calvo-Zaragoza J, Valero-Mas JJ, Rico-Juan JR (2017) Selecting promising classes from generated data for an efficient multi-class nearest neighbor classification. Soft Comput 21(20):6183\u20136189","journal-title":"Soft Comput"},{"key":"7860_CR6","doi-asserted-by":"publisher","DOI":"10.1002\/9780470140529","volume-title":"Learning from data: concepts, theory, and methods","author":"V Cherkassky","year":"2007","unstructured":"Cherkassky V, Mulier FM (2007) Learning from data: concepts, theory, and methods. Wiley, London"},{"issue":"3","key":"7860_CR7","doi-asserted-by":"publisher","first-page":"273","DOI":"10.1007\/BF00994018","volume":"20","author":"C Cortes","year":"1995","unstructured":"Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273\u2013297","journal-title":"Mach Learn"},{"issue":"1","key":"7860_CR8","doi-asserted-by":"publisher","first-page":"15","DOI":"10.1007\/s10898-007-9162-0","volume":"41","author":"I Dagher","year":"2008","unstructured":"Dagher I (2008) Quadratic kernel-free non-linear support vector machine. J Global Optim 41(1):15\u201330","journal-title":"J Global Optim"},{"issue":"24","key":"7860_CR9","doi-asserted-by":"publisher","first-page":"18591","DOI":"10.1007\/s00500-020-05094-1","volume":"24","author":"RM Devi","year":"2020","unstructured":"Devi RM, Seenivasagam V (2020) Automatic segmentation and classification of liver tumor from CT image using feature difference and SVM based classifier-soft computing technique. Soft Comput 24(24):18591\u201318598","journal-title":"Soft Comput"},{"key":"7860_CR10","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2021.107628","volume":"110","author":"HA Fayed","year":"2021","unstructured":"Fayed HA, Atiya AF (2021) Decision boundary clustering for efficient local SVM. Appl Soft Comput 110:107628","journal-title":"Appl Soft Comput"},{"issue":"4","key":"7860_CR11","doi-asserted-by":"publisher","first-page":"539","DOI":"10.1007\/s40305-018-00239-4","volume":"7","author":"QQ Gao","year":"2019","unstructured":"Gao QQ, Bai YQ, Zhan YR (2019) Quadratic kernel-free least square twin support vector machine for binary classification problems. J Oper Res Soc China 7(4):539\u2013559","journal-title":"J Oper Res Soc China"},{"key":"7860_CR12","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2021.107123","volume":"226","author":"Z Gao","year":"2021","unstructured":"Gao Z, Fang SC, Gao X, Luo J, Medhin N (2021) A novel kernel-free least squares twin support vector machine for fast and accurate multi-class classification. Knowl-Based Syst 226:107123","journal-title":"Knowl-Based Syst"},{"issue":"1","key":"7860_CR13","doi-asserted-by":"publisher","first-page":"248","DOI":"10.1016\/j.ejor.2020.10.040","volume":"290","author":"Z Gao","year":"2021","unstructured":"Gao Z, Fang SC, Luo J, Medhin N (2021) A kernel-free double well potential support vector machine with applications. Eur J Oper Res 290(1):248\u2013262","journal-title":"Eur J Oper Res"},{"key":"7860_CR14","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2022.109390","volume":"127","author":"Z Gao","year":"2022","unstructured":"Gao Z, Wang Y, Huang M, Luo J, Tang S (2022) A kernel-free fuzzy reduced quadratic surface $$\\nu $$-support vector machine with applications. Appl Soft Comput 127:109390","journal-title":"Appl Soft Comput"},{"issue":"3","key":"7860_CR15","doi-asserted-by":"publisher","first-page":"635","DOI":"10.3390\/s19030635","volume":"19","author":"SH Javadi","year":"2019","unstructured":"Javadi SH, Moosaei H, Ciuonzo D (2019) Learning wireless sensor networks for source localization. Sensors 19(3):635","journal-title":"Sensors"},{"key":"7860_CR16","doi-asserted-by":"publisher","DOI":"10.1016\/j.cities.2022.103794","volume":"129","author":"AR Javed","year":"2022","unstructured":"Javed AR, Shahzad F, Rehman S, Zikria YB, Razzak I, Jalil Z, Xu G (2022) Future smart cities requirements, emerging technologies, applications, challenges, and future aspects. Cities 129:103794","journal-title":"Cities"},{"issue":"1\u20132","key":"7860_CR17","doi-asserted-by":"publisher","first-page":"155","DOI":"10.1007\/s10479-017-2724-8","volume":"276","author":"S Ketabchi","year":"2019","unstructured":"Ketabchi S, Moosaei H, Razzaghi M, Pardalos PM (2019) An improvement on parametric $$\\nu $$-support vector algorithm for classification. Ann Oper Res 276(1\u20132):155\u2013168","journal-title":"Ann Oper Res"},{"issue":"06","key":"7860_CR18","doi-asserted-by":"publisher","first-page":"1650046","DOI":"10.1142\/S0217595916500469","volume":"33","author":"J Luo","year":"2016","unstructured":"Luo J, Fang SC, Deng Z, Guo X (2016) Soft quadratic surface support vector machine for binary classification. Asia-Pacific J Oper Res 33(06):1650046","journal-title":"Asia-Pacific J Oper Res"},{"issue":"1","key":"7860_CR19","doi-asserted-by":"publisher","first-page":"89","DOI":"10.1016\/j.ijforecast.2017.08.004","volume":"34","author":"J Luo","year":"2018","unstructured":"Luo J, Hong T, Fang SC (2018) Benchmarking robustness of load forecasting models under data integrity attacks. Int J Forecast 34(1):89\u2013104","journal-title":"Int J Forecast"},{"issue":"4","key":"7860_CR20","doi-asserted-by":"publisher","first-page":"422","DOI":"10.1137\/0601049","volume":"1","author":"JR Magnus","year":"1980","unstructured":"Magnus JR, Neudecker H (1980) The elimination matrix: some lemmas and applications. SIAM J Algebr Discrete Methods 1(4):422\u2013449","journal-title":"SIAM J Algebr Discrete Methods"},{"key":"7860_CR21","doi-asserted-by":"crossref","unstructured":"Mohammadi N, Doyley MM, Cetin M (2020) A statistical framework for model-based inverse problems in ultrasound elastography. arXiv preprint arXiv:2010.10729","DOI":"10.1109\/IEEECONF51394.2020.9443450"},{"key":"7860_CR22","doi-asserted-by":"crossref","unstructured":"Mousavi A, Shen J (2019) Solution uniqueness of convex piecewise affine functions based optimization with applications to constrained $$\\ell _1$$ minimization. ESAIM Control Optim Calc Variat 25:56","DOI":"10.1051\/cocv\/2018061"},{"issue":"3","key":"7860_CR23","first-page":"309","volume":"8","author":"A Mousavi","year":"2020","unstructured":"Mousavi A, Rezaee M, Ayanzadeh R (2020) A survey on compressive sensing: classical results and recent advancements. J Math Model 8(3):309\u2013344","journal-title":"J Math Model"},{"issue":"3","key":"7860_CR24","doi-asserted-by":"publisher","first-page":"1835","DOI":"10.3934\/jimo.2021046","volume":"18","author":"A Mousavi","year":"2022","unstructured":"Mousavi A, Gao Z, Han L, Lim A (2022) Quadratic surface support vector machine with L1 norm regularization. J Ind Manag Optim 18(3):1835\u20131861","journal-title":"J Ind Manag Optim"},{"key":"7860_CR25","doi-asserted-by":"crossref","unstructured":"Noble WS et al (2004) Support vector machine applications in computational biology. In: Vert JP, B Schoelkopf, K Tsuda (eds) Kernel methods in computational biology, computational molecular biology, MIT Press: London, pp 71\u201392","DOI":"10.7551\/mitpress\/4057.003.0005"},{"key":"7860_CR26","first-page":"2825","volume":"12","author":"F Pedregosa","year":"2011","unstructured":"Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825\u20132830","journal-title":"J Mach Learn Res"},{"key":"7860_CR27","doi-asserted-by":"publisher","first-page":"112","DOI":"10.1016\/j.neunet.2012.09.004","volume":"36","author":"Z Qi","year":"2012","unstructured":"Qi Z, Tian Y, Shi Y (2012) Twin support vector machine with universum data. Neural Netw 36:112\u2013119","journal-title":"Neural Netw"},{"key":"7860_CR28","doi-asserted-by":"crossref","unstructured":"Shen J, Mousavi A (2018) Least sparsity of $$p$$-norm based optimization problems with $$p>1$$. SIAM J Optim 28(3):2721\u20132751","DOI":"10.1137\/17M1140066"},{"key":"7860_CR29","unstructured":"Shen J, Mousavi A (2019) Exact support and vector recovery of constrained sparse vectors via constrained matching pursuit. arXiv preprint arXiv:1903.07236"},{"key":"7860_CR30","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2021.107981","volume":"113","author":"SP Singh","year":"2021","unstructured":"Singh SP, Dhiman G, Tiwari P, Jhaveri RH (2021) A soft computing based multi-objective optimization approach for automatic prediction of software cost models. Appl Soft Comput 113:107981","journal-title":"Appl Soft Comput"},{"key":"7860_CR31","unstructured":"Sinz FH, Chapelle O, Agarwal A, Sch\u00f6lkopf B (2007) An analysis of inference with the universum. In: Proceedings of the 20th international conference on neural information processing systems, Curran Associates Inc., Red Hook, NY, USA, NIPS\u201907, pp 1369\u20131376"},{"issue":"2","key":"7860_CR32","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1111\/j.2517-6161.1974.tb00994.x","volume":"36","author":"M Stone","year":"1974","unstructured":"Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J R Stat Soc Ser B (Methodol) 36(2):111\u2013133","journal-title":"J R Stat Soc Ser B (Methodol)"},{"volume-title":"Statistical learning theory","year":"1998","author":"VN Vapnik","key":"7860_CR33","unstructured":"Vapnik VN (1998) Statistical learning theory. Wiley, Chichester"},{"volume-title":"Theory of pattern recognition","year":"1974","author":"VN Vapnik","key":"7860_CR34","unstructured":"Vapnik VN, Chervonenkis AJ (1974) Theory of pattern recognition. Nauka, Moscow"},{"issue":"1","key":"7860_CR35","doi-asserted-by":"publisher","first-page":"45","DOI":"10.1007\/s10479-015-2039-6","volume":"263","author":"X Wang","year":"2018","unstructured":"Wang X, Fan N, Pardalos PM (2018) Robust chance-constrained support vector machines with second-order moment information. Ann Oper Res 263(1):45\u201368","journal-title":"Ann Oper Res"},{"issue":"4","key":"7860_CR36","doi-asserted-by":"publisher","first-page":"777","DOI":"10.1016\/j.patcog.2010.08.008","volume":"44","author":"XY Wang","year":"2011","unstructured":"Wang XY, Wang T, Bu J (2011) Color image segmentation using pixel wise support vector machine classification. Pattern Recogn 44(4):777\u2013787","journal-title":"Pattern Recogn"},{"key":"7860_CR37","doi-asserted-by":"crossref","unstructured":"Weston J, Collobert R, Sinz F, Bottou L, Vapnik V (2006) Inference with the universum. In: Proceedings of the 23rd international conference on machine learning, pp 1009\u20131016","DOI":"10.1145\/1143844.1143971"},{"key":"7860_CR38","doi-asserted-by":"publisher","first-page":"3421","DOI":"10.1007\/s10489-020-01954-3","volume":"51","author":"Y Xiao","year":"2021","unstructured":"Xiao Y, Wen J, Liu B (2021) A new multi-task learning method with universum data. Appl Intell 51:3421\u20133434","journal-title":"Appl Intell"},{"issue":"1","key":"7860_CR39","doi-asserted-by":"publisher","first-page":"282","DOI":"10.3934\/jimo.2021184","volume":"19","author":"X Yan","year":"2023","unstructured":"Yan X, Zhu H (2023) A kernel-free fuzzy support vector machine with universum. J Ind Manag Optim 19(1):282","journal-title":"J Ind Manag Optim"},{"issue":"20","key":"7860_CR40","doi-asserted-by":"publisher","first-page":"6905","DOI":"10.1007\/s00500-017-2751-z","volume":"22","author":"X Yan","year":"2018","unstructured":"Yan X, Bai Y, Fang SC, Luo J (2018) A proximal quadratic surface support vector machine for semi-supervised binary classification. Soft Comput 22(20):6905\u20136919","journal-title":"Soft Comput"},{"key":"7860_CR41","doi-asserted-by":"publisher","DOI":"10.1007\/978-981-15-1967-3","volume-title":"Machine learning","author":"ZH Zhou","year":"2021","unstructured":"Zhou ZH (2021) Machine learning. Springer, Cham"}],"container-title":["Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00500-023-07860-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00500-023-07860-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00500-023-07860-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,14]],"date-time":"2024-10-14T00:27:54Z","timestamp":1728865674000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00500-023-07860-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,2,12]]},"references-count":41,"journal-issue":{"issue":"9","published-print":{"date-parts":[[2023,5]]}},"alternative-id":["7860"],"URL":"https:\/\/doi.org\/10.1007\/s00500-023-07860-3","relation":{},"ISSN":["1432-7643","1433-7479"],"issn-type":[{"type":"print","value":"1432-7643"},{"type":"electronic","value":"1433-7479"}],"subject":[],"published":{"date-parts":[[2023,2,12]]},"assertion":[{"value":"17 January 2023","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"12 February 2023","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflicts of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}},{"value":"This article does not contain any studies with human participants or animals performed by any of the authors.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethical approval"}},{"value":"Informed consent was obtained from all individual participants included in the study.","order":4,"name":"Ethics","group":{"name":"EthicsHeading","label":"Informed consents"}}]}}