{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T07:12:52Z","timestamp":1726384372448},"reference-count":99,"publisher":"Springer Science and Business Media LLC","issue":"19","license":[{"start":{"date-parts":[[2022,3,2]],"date-time":"2022-03-02T00:00:00Z","timestamp":1646179200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,3,2]],"date-time":"2022-03-02T00:00:00Z","timestamp":1646179200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Soft Comput"],"published-print":{"date-parts":[[2022,10]]},"DOI":"10.1007\/s00500-022-06886-3","type":"journal-article","created":{"date-parts":[[2022,3,2]],"date-time":"2022-03-02T08:05:46Z","timestamp":1646208346000},"page":"10435-10464","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":11,"title":["An Intelligent handcrafted feature selection using Archimedes optimization algorithm for facial analysis"],"prefix":"10.1007","volume":"26","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-8673-7710","authenticated-orcid":false,"given":"Im\u00e8ne","family":"Neggaz","sequence":"first","affiliation":[]},{"given":"Hadria","family":"Fizazi","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,3,2]]},"reference":[{"key":"6886_CR1","doi-asserted-by":"crossref","unstructured":"Abdalrady NA, Aly S (2020) Fusion of multiple simple convolutional neural networks for gender classification. In: 2020 International conference on innovative trends in communication and computer engineering (ITCE), IEEE, pp. 251\u2013256","DOI":"10.1109\/ITCE48509.2020.9047798"},{"key":"6886_CR2","doi-asserted-by":"publisher","first-page":"4708","DOI":"10.1016\/j.matpr.2020.08.350","volume":"33","author":"B Abirami","year":"2020","unstructured":"Abirami B, Subashini T, Mahavaishnavi V (2020) Gender and age prediction from real time facial images using cnn. Mater Today Proc 33:4708\u20134712","journal-title":"Mater Today Proc"},{"key":"6886_CR3","doi-asserted-by":"crossref","unstructured":"Acien A, Morales A, Vera-Rodriguez R, Bartolome I, Fierrez J (2018) measuring the gender and ethnicity bias in deep models for face recognition. in: iberoamerican congress on Pattern Recognition, Springer, pp. 584\u2013593","DOI":"10.1007\/978-3-030-13469-3_68"},{"key":"6886_CR4","doi-asserted-by":"publisher","first-page":"20835","DOI":"10.1007\/s11042-019-7424-8","volume":"78","author":"M Afifi","year":"2019","unstructured":"Afifi M (2019) 11k hands: Gender recognition and biometric identification using a large dataset of hand images. Multimed Tools Appl 78:20835\u201320854","journal-title":"Multimed Tools Appl"},{"key":"6886_CR5","doi-asserted-by":"crossref","unstructured":"Agrawal B, Dixit M (2019) Age estimation and gender prediction using convolutional neural network. In: International conference on sustainable and innovative solutions for current challenges in engineering & technology, Springer, pp. 163\u2013175","DOI":"10.1007\/978-3-030-44758-8_15"},{"key":"6886_CR6","doi-asserted-by":"publisher","first-page":"14078","DOI":"10.1109\/ACCESS.2021.3051085","volume":"9","author":"H Alhichri","year":"2021","unstructured":"Alhichri H, Alswayed AS, Bazi Y, Ammour N, Alajlan NA (2021) Classification of remote sensing images using efficientnet-b3 cnn model with attention. IEEE Access 9:14078\u201314094","journal-title":"IEEE Access"},{"key":"6886_CR7","doi-asserted-by":"crossref","unstructured":"Al-Tashi Q, Rais HM, Abdulkadir SJ, Mirjalili S, Alhussian H (2020) A review of grey wolf optimizer-based feature selection methods for classification. Evolut Mach Learn Techniq 273\u2013286","DOI":"10.1007\/978-981-32-9990-0_13"},{"key":"6886_CR8","doi-asserted-by":"publisher","first-page":"89","DOI":"10.3390\/app11010089","volume":"11","author":"A Althnian","year":"2021","unstructured":"Althnian A, Aloboud N, Alkharashi N, Alduwaish F, Alrshoud M, Kurdi H (2021) Face gender recognition in the wild: an extensive performance comparison of deep-learned, hand-crafted, and fused features with deep and traditional models. Appl Sci 11:89","journal-title":"Appl Sci"},{"key":"6886_CR9","doi-asserted-by":"crossref","unstructured":"Anand S (2021) Archimedes optimization algorithm: Heart disease prediction: archimedes optimization algorithm: heart disease prediction. Multimed Res 4","DOI":"10.46253\/j.mr.v4i3.a4"},{"key":"6886_CR10","doi-asserted-by":"crossref","unstructured":"Annrose J, Rufus N, Rex C, Immanuel DG (2021) A cloud-based platform for soybean plant disease classification using archimedes optimization based hybrid deep learning model. Wirel Pers Commun 1\u201323","DOI":"10.21203\/rs.3.rs-281525\/v1"},{"key":"6886_CR11","doi-asserted-by":"publisher","DOI":"10.1016\/j.imavis.2021.104189","volume":"111","author":"D Aspandi","year":"2021","unstructured":"Aspandi D, Martinez O, Sukno F, Binefa X (2021) Composite recurrent network with internal denoising for facial alignment in still and video images in the wild. Image Vis Comput 111:104189","journal-title":"Image Vis Comput"},{"key":"6886_CR12","doi-asserted-by":"crossref","unstructured":"Aspandi D, Mallol-Ragolta A, Schuller B, Binefa X (2020) Latent-based adversarial neural networks for facial affect estimations. In: 2020 15th IEEE international conference on automatic face and gesture recognition (FG 2020), IEEE, 2020, pp. 606\u2013610","DOI":"10.1109\/FG47880.2020.00053"},{"key":"6886_CR13","doi-asserted-by":"publisher","first-page":"297","DOI":"10.1016\/j.eswa.2017.03.030","volume":"80","author":"SE Bekhouche","year":"2017","unstructured":"Bekhouche SE, Ouafi A, Dornaika F, Taleb-Ahmed A, Hadid A (2017) Pyramid multi-level features for facial demographic estimation. Expert Syst Appl 80:297\u2013310","journal-title":"Expert Syst Appl"},{"key":"6886_CR14","unstructured":"Boon\u00a0Ng C, Haur\u00a0Tay Y, Goi BM (2012) Vision-based human gender recognition: a survey, arXiv e-prints: arXiv\u20131204"},{"key":"6886_CR15","doi-asserted-by":"publisher","first-page":"181","DOI":"10.1016\/j.patrec.2015.09.014","volume":"82","author":"M Castrill\u00f3n-Santana","year":"2016","unstructured":"Castrill\u00f3n-Santana M, Lorenzo-Navarro J, Ram\u00f3n-Balmaseda E (2016) On using periocular biometric for gender classification in the wild. Pattern Recogn Lett 82:181\u2013189","journal-title":"Pattern Recogn Lett"},{"key":"6886_CR16","doi-asserted-by":"crossref","unstructured":"Castrill\u00f3n-Santana M, Lorenzo-Navarro J, Ram\u00f3n-Balmaseda E (2013) Improving gender classification accuracy in the wild. In: Iberoamerican congress on pattern recognition, Springer, pp. 270\u2013277","DOI":"10.1007\/978-3-642-41827-3_34"},{"key":"6886_CR17","doi-asserted-by":"publisher","first-page":"451","DOI":"10.1080\/02533839.2020.1751724","volume":"43","author":"W-S Chen","year":"2020","unstructured":"Chen W-S, Jeng R-H (2020) A new patch-based lbp with adaptive weights for gender classification of human face. J Chin Inst Eng 43:451\u2013457","journal-title":"J Chin Inst Eng"},{"key":"6886_CR18","doi-asserted-by":"crossref","unstructured":"Comas J, Aspandi D, Binefa X (2020) End-to-end facial and physiological model for affective computing and applications. In: 2020 15th IEEE international conference on automatic face and gesture recognition (FG 2020), IEEE, pp. 93\u2013100","DOI":"10.1109\/FG47880.2020.00001"},{"key":"6886_CR19","doi-asserted-by":"crossref","unstructured":"Dago-Casas P, Gonz\u00e1lez-Jim\u00e9nez D, Yu LL, Alba-Castro JL (2011) Single-and cross-database benchmarks for gender classification under unconstrained settings. In: 2011 IEEE international conference on computer vision workshops (ICCV Workshops), IEEE, pp. 2152\u20132159","DOI":"10.1109\/ICCVW.2011.6130514"},{"key":"6886_CR20","unstructured":"Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: (2005) IEEE computer society conference on computer vision and pattern recognition (CVPR\u201905), volume 1. IEEE 886\u2013893"},{"key":"6886_CR21","doi-asserted-by":"publisher","first-page":"20","DOI":"10.1016\/j.knosys.2018.06.001","volume":"159","author":"G Dhiman","year":"2018","unstructured":"Dhiman G, Kumar V (2018) Emperor penguin optimizer: a bio-inspired algorithm for engineering problems. Knowl-Based Syst 159:20\u201350","journal-title":"Knowl-Based Syst"},{"key":"6886_CR22","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2020.106560","volume":"211","author":"G Dhiman","year":"2021","unstructured":"Dhiman G, Oliva D, Kaur A, Singh KK, Vimal S, Sharma A, Cengiz K (2021) Bepo: a novel binary emperor penguin optimizer for automatic feature selection. Knowl-Based Syst 211:106560","journal-title":"Knowl-Based Syst"},{"key":"6886_CR23","doi-asserted-by":"publisher","first-page":"448","DOI":"10.1016\/j.neucom.2017.08.062","volume":"275","author":"M Duan","year":"2018","unstructured":"Duan M, Li K, Yang C, Li K (2018) A hybrid deep learning cnn-elm for age and gender classification. Neurocomputing 275:448\u2013461","journal-title":"Neurocomputing"},{"key":"6886_CR24","doi-asserted-by":"crossref","unstructured":"Dwivedi N, Singh DK (2019) Review of deep learning techniques for gender classification in images. In: Harmony search and nature inspired optimization algorithms, Springer pp. 1089\u20131099","DOI":"10.1007\/978-981-13-0761-4_102"},{"key":"6886_CR25","doi-asserted-by":"publisher","first-page":"105190","DOI":"10.1016\/j.knosys.2019.105190","volume":"191","author":"A Faramarzi","year":"2020","unstructured":"Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: a novel optimization algorithm. Knowl-Based Syst 191:105190","journal-title":"Knowl-Based Syst"},{"key":"6886_CR26","doi-asserted-by":"crossref","unstructured":"Fathy A, Alharbi AG, Alshammari S, Hasanien HM (2021) Archimedes optimization algorithm based maximum power point tracker for wind energy generation system. Ain Shams Eng J","DOI":"10.1016\/j.asej.2021.06.032"},{"key":"6886_CR27","doi-asserted-by":"crossref","unstructured":"Fitousi D, Rotschild N, Pnini C, Azizi O (2021) Understanding the impact of face masks on the processing of facial identity, emotion, age, and gender. Front Psychol 4668","DOI":"10.3389\/fpsyg.2021.743793"},{"key":"6886_CR28","doi-asserted-by":"crossref","unstructured":"Gallagher A, Chen T (2009) Understanding groups of images of people. In: IEEE conference on computer vision and pattern recognition, pp. 256\u2013263","DOI":"10.1109\/CVPR.2009.5206828"},{"key":"6886_CR29","doi-asserted-by":"publisher","first-page":"140936","DOI":"10.1109\/ACCESS.2020.3013617","volume":"8","author":"Y Gao","year":"2020","unstructured":"Gao Y, Zhou Y, Luo Q (2020) An efficient binary equilibrium optimizer algorithm for feature selection. IEEE Access 8:140936\u2013140963","journal-title":"IEEE Access"},{"key":"6886_CR30","unstructured":"Gary BH, Manu R, Tamara B, Erik L et\u00a0al (2007) Labeled faces in the wild: A database for studying face recognition in unconstrained environments. In: Technical report 07-49, University of Massachusetts 1"},{"key":"6886_CR31","doi-asserted-by":"publisher","first-page":"2525","DOI":"10.1007\/s00500-018-03679-5","volume":"23","author":"A Geetha","year":"2019","unstructured":"Geetha A, Sundaram M, Vijayakumari B (2019) Gender classification from face images by mixing the classifier outcome of prime, distinct descriptors. Soft Comput 23:2525\u20132535","journal-title":"Soft Comput"},{"key":"6886_CR32","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2021.107173","volume":"103","author":"H Ghazouani","year":"2021","unstructured":"Ghazouani H (2021) A genetic programming-based feature selection and fusion for facial expression recognition. Appl Soft Comput 103:107173","journal-title":"Appl Soft Comput"},{"key":"6886_CR33","doi-asserted-by":"crossref","unstructured":"Ghojogh B, Shouraki SB, Mohammadzade H, Iranmehr E (2018) A fusion-based gender recognition method using facial images. In: Electrical engineering (ICEE), Iranian conference on, IEEE, pp. 1493\u20131498","DOI":"10.1109\/ICEE.2018.8472550"},{"key":"6886_CR34","doi-asserted-by":"crossref","unstructured":"Ghosh KK, Guha R, Bera SK, Kumar N, Sarkar R (2021) S-shaped versus v-shaped transfer functions for binary manta ray foraging optimization in feature selection problem. Neural Comput Appl 1\u201315","DOI":"10.1007\/s00521-020-05560-9"},{"key":"6886_CR35","doi-asserted-by":"crossref","unstructured":"Goel A, Vishwakarma VP (2016) Gender classification using kpca and svm. In: 2016 IEEE international conference on recent trends in electronics, information communication technology (RTEICT), 2016, pp. 291\u2013295. 10.1109\/RTEICT.2016.7807829","DOI":"10.1109\/RTEICT.2016.7807829"},{"key":"6886_CR36","doi-asserted-by":"crossref","unstructured":"Goel A, Vishwakarma VP (2016a) Efficient feature extraction using dct for gender classification. In: 2016 IEEE international conference on recent trends in electronics, information & communication technology (RTEICT), IEEE pp 1925\u20131928","DOI":"10.1109\/RTEICT.2016.7808171"},{"key":"6886_CR37","doi-asserted-by":"crossref","unstructured":"Goel A, Vishwakarma VP (2016b) Feature extraction technique using hybridization of dwt and dct for gender classification. In: 2016 ninth international conference on contemporary computing (IC3), IEEE, . 1\u20136","DOI":"10.1109\/IC3.2016.7880191"},{"key":"6886_CR38","doi-asserted-by":"publisher","first-page":"130771","DOI":"10.1109\/ACCESS.2020.3008793","volume":"8","author":"A Greco","year":"2020","unstructured":"Greco A, Saggese A, Vento M, Vigilante V (2020) A convolutional neural network for gender recognition optimizing the accuracy\/speed tradeoff. IEEE Access 8:130771\u2013130781","journal-title":"IEEE Access"},{"key":"6886_CR39","doi-asserted-by":"publisher","first-page":"10461","DOI":"10.1007\/s12652-020-02750-0","volume":"12","author":"A Greco","year":"2021","unstructured":"Greco A, Saggese A, Vento M, Vigilante V (2021) Gender recognition in the wild: a robustness evaluation over corrupted images. J Ambient Intel Human Comput 12:10461\u201310472","journal-title":"J Ambient Intel Human Comput"},{"key":"6886_CR40","doi-asserted-by":"crossref","unstructured":"Greco A, Saggesea A, Vento M, Vigilante V (2020) Gender recognition in the wild: a robustness evaluation over corrupted images. J Intell Human Comput 1\u201312","DOI":"10.1007\/s12652-020-02750-0"},{"key":"6886_CR41","doi-asserted-by":"crossref","unstructured":"Grother P, Grother P, Ngan M, Hanaoka K (2019) Face recognition vendor test (FRVT) part 2: identification. US Department of Commerce, National Institute of Standards and Technology","DOI":"10.6028\/NIST.IR.8271"},{"key":"6886_CR42","doi-asserted-by":"publisher","first-page":"15","DOI":"10.1007\/s11554-017-0714-3","volume":"16","author":"KZ Haider","year":"2019","unstructured":"Haider KZ, Malik KR, Khalid S, Nawaz T, Jabbar S (2019) Deepgender: real-time gender classification using deep learning for smartphones. J Real-Time Image Proc 16:15\u201329","journal-title":"J Real-Time Image Proc"},{"key":"6886_CR43","doi-asserted-by":"crossref","unstructured":"Hashim FA, Hussain K, Houssein EH, Mabrouk MS, Al-Atabany W (2020) Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Appl Intell 1\u201321","DOI":"10.1007\/s10489-020-01893-z"},{"key":"6886_CR44","doi-asserted-by":"publisher","first-page":"646","DOI":"10.1016\/j.future.2019.07.015","volume":"101","author":"FA Hashim","year":"2019","unstructured":"Hashim FA, Houssein EH, Mabrouk MS, Al-Atabany W, Mirjalili S (2019) Henry gas solubility optimization: a novel physics-based algorithm. Futur Gener Comput Syst 101:646\u2013667","journal-title":"Futur Gener Comput Syst"},{"key":"6886_CR45","doi-asserted-by":"publisher","first-page":"849","DOI":"10.1016\/j.future.2019.02.028","volume":"97","author":"AA Heidari","year":"2019","unstructured":"Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849\u2013872","journal-title":"Futur Gener Comput Syst"},{"key":"6886_CR46","doi-asserted-by":"publisher","first-page":"11631","DOI":"10.1007\/s11042-020-10141-y","volume":"80","author":"C-Y Hsu","year":"2021","unstructured":"Hsu C-Y, Lin L-E, Lin CH (2021) Age and gender recognition with random occluded data augmentation on facial images. Multimed Tools Appl 80:11631\u201311653","journal-title":"Multimed Tools Appl"},{"key":"6886_CR47","doi-asserted-by":"crossref","unstructured":"Hung BT (2021) Face recognition using hybrid hog-cnn approach. In: Research in intelligent and computing in engineering, Springer, pp. 715\u2013723","DOI":"10.1007\/978-981-15-7527-3_67"},{"key":"6886_CR48","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s42979-020-00294-w","volume":"1","author":"HT Huynh","year":"2020","unstructured":"Huynh HT, Nguyen H (2020) Joint age estimation and gender classification of asian faces using wide resnet. SN Comput Sci 1:1\u20139","journal-title":"SN Comput Sci"},{"key":"6886_CR49","doi-asserted-by":"crossref","unstructured":"Ito K, Kawai H, Okano T, Aoki T (2018) Age and gender prediction from face images using convolutional neural network. In: (2018) Asia-Pacific signal and information processing association annual summit and conference (APSIPA ASC). IEEE 7\u201311","DOI":"10.23919\/APSIPA.2018.8659655"},{"key":"6886_CR50","doi-asserted-by":"crossref","unstructured":"Jalali S, Boostani R, Mohammadi M (2021) Efficient fingerprint features for gender recognition. Multidim Syst Signal Process 1\u201317","DOI":"10.1007\/s11045-021-00789-6"},{"key":"6886_CR51","doi-asserted-by":"publisher","first-page":"14","DOI":"10.28948\/ngumuh.383746","volume":"7","author":"T Khalifa","year":"2018","unstructured":"Khalifa T, \u015eeng\u00fcl G (2018) Gender prediction from facial images using local binary patterns and histograms of oriented gradients transformations. Ni\u011fde \u00d6mer Halisdemir \u00dcniversitesi M\u00fchendislik Bilimleri Dergisi 7:14\u201322","journal-title":"Ni\u011fde \u00d6mer Halisdemir \u00dcniversitesi M\u00fchendislik Bilimleri Dergisi"},{"key":"6886_CR52","doi-asserted-by":"publisher","first-page":"770","DOI":"10.3390\/sym11060770","volume":"11","author":"K Khan","year":"2019","unstructured":"Khan K, Attique M, Syed I, Gul A (2019) Automatic gender classification through face segmentation. Symmetry 11:770","journal-title":"Symmetry"},{"key":"6886_CR53","doi-asserted-by":"publisher","first-page":"553","DOI":"10.1007\/s13042-019-00995-6","volume":"11","author":"G Khan","year":"2020","unstructured":"Khan G, Samyan S, Khan MUG, Shahid M, Wahla SQ (2020) A survey on analysis of human faces and facial expressions datasets. Int J Mach Learn Cybern 11:553\u2013571","journal-title":"Int J Mach Learn Cybern"},{"key":"6886_CR54","doi-asserted-by":"crossref","unstructured":"Kumar S, Singh S, Kumar J (2019) Gender classification using machine learning with multi-feature method. In: (2019) IEEE 9th annual computing and communication workshop and conference (CCWC). IEEE 0648\u20130653","DOI":"10.1109\/CCWC.2019.8666601"},{"key":"6886_CR55","doi-asserted-by":"publisher","DOI":"10.1016\/j.micpro.2021.103834","volume":"82","author":"D Lakshmi","year":"2021","unstructured":"Lakshmi D, Ponnusamy R (2021) Facial emotion recognition using modified hog and lbp features with deep stacked autoencoders. Microprocess Microsyst 82:103834","journal-title":"Microprocess Microsyst"},{"key":"6886_CR56","unstructured":"Lapuschkin S, Binder A, Muller K-R, Samek W (2017) Understanding and comparing deep neural networks for age and gender classification. In: Proceedings of the IEEE international conference on computer vision workshops, pp. 1629\u20131638"},{"key":"6886_CR57","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2021.116040","volume":"189","author":"M Lee","year":"2022","unstructured":"Lee M, Lee J-H, Kim D-H (2022) Gender recognition using optimal gait feature based on recursive feature elimination in normal walking. Expert Syst Appl 189:116040","journal-title":"Expert Syst Appl"},{"key":"6886_CR58","doi-asserted-by":"publisher","first-page":"1227","DOI":"10.3390\/electronics9081227","volume":"9","author":"C-J Lin","year":"2020","unstructured":"Lin C-J, Li Y-C, Lin H-Y (2020) Using convolutional neural networks based on a taguchi method for face gender recognition. Electronics 9:1227","journal-title":"Electronics"},{"key":"6886_CR59","doi-asserted-by":"publisher","first-page":"492","DOI":"10.3390\/make1010030","volume":"1","author":"IE Livieris","year":"2019","unstructured":"Livieris IE, Pintelas E, Pintelas P (2019) Gender recognition by voice using an improved self-labeled algorithm. Mach Learn Knowl Extract 1:492\u2013503","journal-title":"Mach Learn Knowl Extract"},{"key":"6886_CR60","doi-asserted-by":"publisher","first-page":"441","DOI":"10.1016\/j.asoc.2017.11.006","volume":"62","author":"M Mafarja","year":"2018","unstructured":"Mafarja M, Mirjalili S (2018) Whale optimization approaches for wrapper feature selection. Appl Soft Comput 62:441\u2013453","journal-title":"Appl Soft Comput"},{"key":"6886_CR61","doi-asserted-by":"crossref","unstructured":"Mane S, Shah G (2019) Facial recognition, expression recognition, and gender identification. In: Data management, analytics and innovation, Springer, pp. 275\u2013290","DOI":"10.1007\/978-981-13-1402-5_21"},{"key":"6886_CR62","doi-asserted-by":"publisher","first-page":"80","DOI":"10.1016\/j.patrec.2015.11.015","volume":"70","author":"J Mansanet","year":"2016","unstructured":"Mansanet J, Albiol A, Paredes R (2016) Local deep neural networks for gender recognition. Pattern Recogn Lett 70:80\u201386","journal-title":"Pattern Recogn Lett"},{"key":"6886_CR63","doi-asserted-by":"crossref","unstructured":"Micheal AA, Geetha P (2019) Combined feature extraction for multi-view gender recognition. In: Smart Intelligent Computing and Applications, Springer, pp. 219\u2013228","DOI":"10.1007\/978-981-13-1921-1_22"},{"key":"6886_CR64","doi-asserted-by":"publisher","first-page":"120","DOI":"10.1016\/j.knosys.2015.12.022","volume":"96","author":"S Mirjalili","year":"2016","unstructured":"Mirjalili S (2016) Sca: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120\u2013133","journal-title":"Knowl-Based Syst"},{"key":"6886_CR65","doi-asserted-by":"publisher","first-page":"495","DOI":"10.1007\/s00521-015-1870-7","volume":"27","author":"S Mirjalili","year":"2016","unstructured":"Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27:495\u2013513","journal-title":"Neural Comput Appl"},{"key":"6886_CR66","doi-asserted-by":"crossref","unstructured":"Mirza AM, Hussain M, Almuzaini H, Muhammad G, Aboalsamh H, Bebis G (2013) Gender recognition using fusion of local and global facial features. In: International symposium on visual computing, Springer, pp 493\u2013502","DOI":"10.1007\/978-3-642-41939-3_48"},{"key":"6886_CR67","unstructured":"Nefian AV (2013) Georgia tech face database"},{"key":"6886_CR68","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2020.113364","volume":"152","author":"N Neggaz","year":"2020","unstructured":"Neggaz N, Houssein EH, Hussain K (2020) An efficient henry gas solubility optimization for feature selection. Expert Syst Appl 152:113364","journal-title":"Expert Syst Appl"},{"key":"6886_CR69","doi-asserted-by":"publisher","first-page":"739","DOI":"10.1007\/s10044-015-0499-6","volume":"18","author":"C-B Ng","year":"2015","unstructured":"Ng C-B, Tay Y-H, Goi B-M (2015) A review of facial gender recognition. Pattern Anal Appl 18:739\u2013755","journal-title":"Pattern Anal Appl"},{"key":"6886_CR70","doi-asserted-by":"crossref","unstructured":"Nguyen H-T, Huong TTN (2017) Gender classification by lpq features from intensity and monogenic images. In: 2017 4th NAFOSTED conference on information and computer science, IEEE, pp. 96\u2013100","DOI":"10.1109\/NAFOSTED.2017.8108045"},{"key":"6886_CR71","doi-asserted-by":"publisher","first-page":"971","DOI":"10.1109\/TPAMI.2002.1017623","volume":"24","author":"T Ojala","year":"2002","unstructured":"Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24:971\u2013987","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"6886_CR72","doi-asserted-by":"crossref","unstructured":"Omer HK, Jalab HA, Hasan AM, Tawfiq NE (2019) Combination of local binary pattern and face geometric features for gender classification from face images. In: 2019 9th IEEE international conference on control system, computing and engineering (ICCSCE), IEEE, pp. 158\u2013161","DOI":"10.1109\/ICCSCE47578.2019.9068593"},{"key":"6886_CR73","doi-asserted-by":"crossref","unstructured":"Orozco CI, Iglesias F, Buemi ME, Berlles JJ (2017) Real-time gender recognition from face images using deep convolutional neural network","DOI":"10.1049\/ic.2017.0027"},{"key":"6886_CR74","doi-asserted-by":"crossref","unstructured":"Osman SM, Viriri S (2020) Dynamic local ternary patterns for gender identification using facial components. International Conference on Computer Vision and Graphics, Springer pp 133\u2013141","DOI":"10.1007\/978-3-030-59006-2_12"},{"key":"6886_CR75","doi-asserted-by":"crossref","unstructured":"Pai S, Shettigar R (2021) Gender recognition from face images using sift descriptors and trainable features. In: Advances in artificial intelligence and data engineering, Springer, pp. 1173\u20131186","DOI":"10.1007\/978-981-15-3514-7_87"},{"key":"6886_CR76","doi-asserted-by":"publisher","first-page":"294","DOI":"10.17762\/turcomat.v12i1S.1770","volume":"12","author":"KA Patil","year":"2021","unstructured":"Patil KA et al (2021) Features and methods of human age estimation: opportunities and challenges in medical image processing. Turkish J Comput Math Educ (TURCOMAT) 12:294\u2013318","journal-title":"Turkish J Comput Math Educ (TURCOMAT)"},{"key":"6886_CR77","doi-asserted-by":"crossref","unstructured":"Pattnaik G, Parvathi K (2021) Automatic detection and classification of tomato pests using support vector machine based on hog and lbp feature extraction technique. In: Progress in advanced computing and intelligent engineering, Springer, pp. 49\u201355","DOI":"10.1007\/978-981-15-6353-9_5"},{"key":"6886_CR78","doi-asserted-by":"publisher","first-page":"113911","DOI":"10.1016\/j.eswa.2020.113911","volume":"165","author":"A Peimankar","year":"2021","unstructured":"Peimankar A, Puthusserypady S (2021) Dens-ecg: a deep learning approach for ecg signal delineation. Expert Syst Appl 165:113911","journal-title":"Expert Syst Appl"},{"key":"6886_CR79","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2021.114708","volume":"173","author":"M Peker","year":"2021","unstructured":"Peker M (2021) Classification of hyperspectral imagery using a fully complex-valued wavelet neural network with deep convolutional features. Expert Syst Appl 173:114708","journal-title":"Expert Syst Appl"},{"key":"6886_CR80","unstructured":"Preeti RK (2021) Performance estimation of wireless sensor network using archimedes optimization algorithm. Des Eng 728\u2013746"},{"key":"6886_CR81","first-page":"31","volume":"62","author":"TK Sajja","year":"2019","unstructured":"Sajja TK, Kalluri HK (2019) Gender classification based on face images of local binary pattern using support vector machine and back propagation neural networks. Adv Model Anal B 62:31\u201335","journal-title":"Adv Model Anal B"},{"key":"6886_CR82","doi-asserted-by":"publisher","first-page":"e197","DOI":"10.7717\/peerj-cs.197","volume":"5","author":"AV Savchenko","year":"2019","unstructured":"Savchenko AV (2019) Efficient facial representations for age, gender and identity recognition in organizing photo albums using multi-output convnet. Peer J Comput Sci 5:e197","journal-title":"Peer J Comput Sci"},{"key":"6886_CR83","unstructured":"Silva DPd (2019) Age and gender classification: a proposed system, Ph.D. thesis"},{"key":"6886_CR84","doi-asserted-by":"publisher","first-page":"444","DOI":"10.1007\/978-3-030-17795-9_33","volume-title":"Advances in Computer Vision","author":"F Simanjuntak","year":"2020","unstructured":"Simanjuntak F, Azzopardi G (2020) Fusion of cnn- and cosfire-based features with application to gender recognition from face images. In: Arai K, Kapoor S (eds) Advances in Computer Vision. Springer International Publishing, Cham, pp 444\u2013458"},{"key":"6886_CR85","doi-asserted-by":"crossref","unstructured":"Singh A, Rai N, Sharma P, Nagrath P, Jain R (2021) Age, gender prediction and emotion recognition using convolutional neural network, Available at SSRN 3833759","DOI":"10.2139\/ssrn.3833759"},{"key":"6886_CR86","doi-asserted-by":"publisher","DOI":"10.1016\/j.energy.2021.121532","volume":"237","author":"X Sun","year":"2021","unstructured":"Sun X, Wang G, Xu L, Yuan H, Yousefi N (2021) Optimal estimation of the pem fuel cells applying deep belief network optimized by improved archimedes optimization algorithm. Energy 237:121532","journal-title":"Energy"},{"key":"6886_CR87","doi-asserted-by":"crossref","unstructured":"Surinta O, Khamket T, Gender recognition from facial images using local gradient feature descriptors. In: (2019) 14th international joint symposium on artificial intelligence and natural language processing (iSAI-NLP). IEEE 1\u20136","DOI":"10.1109\/iSAI-NLP48611.2019.9045689"},{"key":"6886_CR88","doi-asserted-by":"crossref","unstructured":"Taghian S, Nadimi-Shahraki MH (2019) Binary sine cosine algorithms for feature selection from medical data, arXiv preprint arXiv:1911.07805","DOI":"10.5121\/acij.2019.10501"},{"key":"6886_CR89","doi-asserted-by":"crossref","unstructured":"Thaher T, Heidari AA, Mafarja M, Dong JS, Mirjalili S (2020) Binary harris hawks optimizer for high-dimensional, low sample size feature selection. In: Evolutionary machine learning techniques, Springer, pp. 251\u2013272","DOI":"10.1007\/978-981-32-9990-0_12"},{"key":"6886_CR90","doi-asserted-by":"publisher","first-page":"902","DOI":"10.1016\/j.imavis.2009.11.005","volume":"28","author":"CE Thomaz","year":"2010","unstructured":"Thomaz CE, Giraldi GA (2010) A new ranking method for principal components analysis and its application to face image analysis. Image Vis Comput 28:902\u2013913","journal-title":"Image Vis Comput"},{"key":"6886_CR91","doi-asserted-by":"publisher","DOI":"10.1016\/j.bspc.2021.102650","volume":"68","author":"MK U\u00e7ar","year":"2021","unstructured":"U\u00e7ar MK, U\u00e7ar Z, U\u00e7ar K, Akman M, Bozkurt MR (2021) Determination of body fat percentage by electrocardiography signal with gender based artificial intelligence. Biomed Signal Process Control 68:102650","journal-title":"Biomed Signal Process Control"},{"key":"6886_CR92","doi-asserted-by":"crossref","unstructured":"Vimal S, Robinson YH, Kaliappan M, Vijayalakshmi K, Seo S (2021) A method of progression detection for glaucoma using k-means and the glcm algorithm toward smart medical prediction. The J Supercomput 1\u201317","DOI":"10.1007\/s11227-022-04854-0"},{"key":"6886_CR93","doi-asserted-by":"publisher","first-page":"67","DOI":"10.1109\/4235.585893","volume":"1","author":"DH Wolpert","year":"1997","unstructured":"Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67\u201382","journal-title":"IEEE Trans Evol Comput"},{"key":"6886_CR94","doi-asserted-by":"publisher","first-page":"5700","DOI":"10.1016\/j.egyr.2021.08.177","volume":"7","author":"B Yao","year":"2021","unstructured":"Yao B, Hayati H (2021) Model parameters estimation of a proton exchange membrane fuel cell using improved version of archimedes optimization algorithm. Energy Rep 7:5700\u20135709","journal-title":"Energy Rep"},{"key":"6886_CR95","doi-asserted-by":"publisher","first-page":"356","DOI":"10.1515\/mt-2020-0053","volume":"63","author":"BS Y\u0131ld\u0131z","year":"2021","unstructured":"Y\u0131ld\u0131z BS, Pholdee N, Bureerat S, Erda\u015f MU, Y\u0131ld\u0131z AR, Sait SM (2021) Comparision of the political optimization algorithm, the archimedes optimization algorithm and the levy flight algorithm for design optimization in industry. Mater Test 63:356\u2013359","journal-title":"Mater Test"},{"key":"6886_CR96","doi-asserted-by":"crossref","unstructured":"Yu H, Yang LT, Zhang Q, Armstrong D, Deen MJ (2021) Convolutional neural networks for medical image analysis: state-of-the-art, comparisons, improvement and perspectives. Neurocomputing","DOI":"10.1016\/j.neucom.2020.04.157"},{"key":"6886_CR97","doi-asserted-by":"crossref","unstructured":"Zhang C, Ding H, Shang Y, Shao Z, Fu X (2018) Gender classification based on multiscale facial fusion feature. Math Probl Eng 2018","DOI":"10.1155\/2018\/1924151"},{"key":"6886_CR98","doi-asserted-by":"publisher","first-page":"103300","DOI":"10.1016\/j.engappai.2019.103300","volume":"87","author":"W Zhao","year":"2020","unstructured":"Zhao W, Zhang Z, Wang L (2020) Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications. Eng Appl Artif Intell 87:103300","journal-title":"Eng Appl Artif Intell"},{"key":"6886_CR99","doi-asserted-by":"publisher","first-page":"4891","DOI":"10.3233\/JIFS-17193","volume":"37","author":"Y Zhou","year":"2019","unstructured":"Zhou Y, Li Z (2019) Facial eigen-feature based gender recognition with an improved genetic algorithm. J Intell Fuzzy Syst 37:4891\u20134902","journal-title":"J Intell Fuzzy Syst"}],"container-title":["Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00500-022-06886-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00500-022-06886-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00500-022-06886-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,24]],"date-time":"2022-10-24T18:21:56Z","timestamp":1666635716000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00500-022-06886-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,3,2]]},"references-count":99,"journal-issue":{"issue":"19","published-print":{"date-parts":[[2022,10]]}},"alternative-id":["6886"],"URL":"https:\/\/doi.org\/10.1007\/s00500-022-06886-3","relation":{},"ISSN":["1432-7643","1433-7479"],"issn-type":[{"value":"1432-7643","type":"print"},{"value":"1433-7479","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,3,2]]},"assertion":[{"value":"4 February 2022","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"2 March 2022","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors have declared that there is no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}},{"value":"This article does not contain any studies with human participants or animals performed by any of the authors.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethical approval"}},{"value":"Informed consent was obtained from all individual participants included in the study","order":4,"name":"Ethics","group":{"name":"EthicsHeading","label":"Informed consent"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}