{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T05:55:25Z","timestamp":1714542925197},"reference-count":42,"publisher":"Springer Science and Business Media LLC","issue":"8","license":[{"start":{"date-parts":[[2020,2,18]],"date-time":"2020-02-18T00:00:00Z","timestamp":1581984000000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,2,18]],"date-time":"2020-02-18T00:00:00Z","timestamp":1581984000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Soft Comput"],"published-print":{"date-parts":[[2020,4]]},"DOI":"10.1007\/s00500-020-04750-w","type":"journal-article","created":{"date-parts":[[2020,2,18]],"date-time":"2020-02-18T19:02:40Z","timestamp":1582052560000},"page":"6151-6167","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":8,"title":["A simple two-phase differential evolution for improved global numerical optimization"],"prefix":"10.1007","volume":"24","author":[{"given":"Arka","family":"Ghosh","sequence":"first","affiliation":[]},{"given":"Swagatam","family":"Das","sequence":"additional","affiliation":[]},{"given":"Asit Kr.","family":"Das","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,2,18]]},"reference":[{"issue":"9","key":"4750_CR1","doi-asserted-by":"publisher","first-page":"2768","DOI":"10.1109\/TCYB.2016.2617301","volume":"47","author":"MZ Ali","year":"2017","unstructured":"Ali MZ, Awad NH, Suganthan PN, Reynolds RG (2017) An adaptive multipopulation differential evolution with dynamic population reduction. IEEE Trans Cybern 47(9):2768\u20132779","journal-title":"IEEE Trans Cybern"},{"key":"4750_CR2","unstructured":"Awad N, Liang J, Qu B, Suganthan P (2016) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained real-parameter numerical optimization. Technical Report, Nanyang Technological University, Singapore"},{"key":"4750_CR3","doi-asserted-by":"crossref","unstructured":"Brest J, Maucec MS, Boskovic B (2017) Single objective real-parameter optimization: Algorithm jSO. In: 2017 IEEE congress on evolutionary computation (CEC). IEEE","DOI":"10.1109\/CEC.2017.7969456"},{"key":"4750_CR4","doi-asserted-by":"crossref","unstructured":"Chatterjee I, Zhou M (2017) Differential evolution algorithms under multi-population strategy. In: 2017 26th wireless and optical communication conference (WOCC). IEEE","DOI":"10.1109\/WOCC.2017.7928972"},{"key":"4750_CR5","doi-asserted-by":"publisher","first-page":"155","DOI":"10.1016\/j.cor.2015.09.006","volume":"67","author":"L Cui","year":"2016","unstructured":"Cui L, Li G, Lin Q, Chen J, Lu N (2016) Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations. Comput Oper Res 67:155\u2013173","journal-title":"Comput Oper Res"},{"key":"4750_CR6","doi-asserted-by":"publisher","first-page":"122","DOI":"10.1016\/j.ins.2017.09.002","volume":"422","author":"L Cui","year":"2018","unstructured":"Cui L, Li G, Zhu Z, Lin Q, Wong K-C, Chen J, Lu N, Lu J (2018) Adaptive multiple-elites-guided composite differential evolution algorithm with a shift mechanism. Inf Sci 422:122\u2013143","journal-title":"Inf Sci"},{"issue":"1","key":"4750_CR7","doi-asserted-by":"publisher","first-page":"4","DOI":"10.1109\/TEVC.2010.2059031","volume":"15","author":"S Das","year":"2011","unstructured":"Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4\u201331","journal-title":"IEEE Trans Evol Comput"},{"key":"4750_CR8","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.swevo.2016.01.004","volume":"27","author":"S Das","year":"2016","unstructured":"Das S, Mullick SS, Suganthan PN (2016) Recent advances in differential evolution-an updated survey. Swarm Evol Comput 27:1\u201330","journal-title":"Swarm Evol Comput"},{"key":"4750_CR9","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1016\/j.asoc.2014.11.003","volume":"27","author":"A Draa","year":"2015","unstructured":"Draa A, Bouzoubia S, Boukhalfa I (2015) A sinusoidal differential evolution algorithm for numerical optimisation. Appl Soft Comput 27:99\u2013126","journal-title":"Appl Soft Comput"},{"issue":"1","key":"4750_CR10","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1109\/TEVC.2010.2083670","volume":"15","author":"MG Epitropakis","year":"2011","unstructured":"Epitropakis MG, Tasoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis MN (2011) Enhancing differential evolution utilizing proximity-based mutation operators. IEEE Trans Evol Comput 15(1):99\u2013119","journal-title":"IEEE Trans Evol Comput"},{"issue":"5","key":"4750_CR11","doi-asserted-by":"publisher","first-page":"1108","DOI":"10.1109\/TCYB.2014.2345478","volume":"45","author":"W-F Gao","year":"2015","unstructured":"Gao W-F, Yen GG, Liu S-Y (2015) A dual-population differential evolution with coevolution for constrained optimization. IEEE Trans Cybern 45(5):1108\u20131121","journal-title":"IEEE Trans Cybern"},{"key":"4750_CR12","doi-asserted-by":"publisher","first-page":"329","DOI":"10.1016\/j.asoc.2017.03.003","volume":"57","author":"A Ghosh","year":"2017","unstructured":"Ghosh A, Das S, Mullick SS, Mallipeddi R, Das AK (2017a) A switched parameter differential evolution with optional blending crossover for scalable numerical optimization. Appl Soft Comput 57:329\u2013352","journal-title":"Appl Soft Comput"},{"key":"4750_CR13","doi-asserted-by":"crossref","unstructured":"Ghosh A, Das S, Panigrahi BK, Das AK (2017b) A noise resilient differential evolution with improved parameter and strategy control. In: 2017 IEEE congress on evolutionary computation (CEC). IEEE, pp 2590\u20132597","DOI":"10.1109\/CEC.2017.7969620"},{"key":"4750_CR14","doi-asserted-by":"crossref","unstructured":"Ghosh A, Mallipeddi R, Das S, Das AK (2018) A switched parameter differential evolution with multi-donor mutation and annealing based local search for optimization of lennard-jones atomic clusters. In: 2018 IEEE congress on evolutionary computation (CEC). IEEE, pp 1\u20138","DOI":"10.1109\/CEC.2018.8477991"},{"key":"4750_CR15","doi-asserted-by":"crossref","unstructured":"Ghosh A, Das S, Das AK, Gao L (2019) Reusing the past difference vectors in differential evolution\u2013a simple but significant improvement. IEEE Trans Cybern","DOI":"10.1109\/TCYB.2019.2921602"},{"key":"4750_CR16","doi-asserted-by":"publisher","first-page":"26944","DOI":"10.1109\/ACCESS.2017.2773825","volume":"5","author":"A Gosh","year":"2017","unstructured":"Gosh A, Das S, Mallipeddi R, Das AK, Dash SS (2017) A modified differential evolution with distance-based selection for continuous optimization in presence of noise. IEEE Access 5:26944\u201326964","journal-title":"IEEE Access"},{"issue":"1","key":"4750_CR17","doi-asserted-by":"publisher","first-page":"31","DOI":"10.1109\/TEVC.2013.2297160","volume":"19","author":"S-M Guo","year":"2015","unstructured":"Guo S-M, Yang C-C (2015) Enhancing differential evolution utilizing eigenvector-based crossover operator. IEEE Trans Evol Comput 19(1):31\u201349","journal-title":"IEEE Trans Evol Comput"},{"issue":"2","key":"4750_CR18","doi-asserted-by":"publisher","first-page":"482","DOI":"10.1109\/TSMCB.2011.2167966","volume":"42","author":"SM Islam","year":"2012","unstructured":"Islam SM, Das S, Ghosh S, Roy S, Suganthan PN (2012) An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Trans Syst Man Cybern Part B (Cybern) 42(2):482\u2013500","journal-title":"IEEE Trans Syst Man Cybern Part B (Cybern)"},{"key":"4750_CR19","doi-asserted-by":"publisher","first-page":"577","DOI":"10.1016\/j.asoc.2016.06.011","volume":"47","author":"G Li","year":"2016","unstructured":"Li G, Lin Q, Cui L, Du Z, Liang Z, Chen J, Lu N, Ming Z (2016) A novel hybrid differential evolution algorithm with modified code and jade. Appl Soft Comput 47:577\u2013599","journal-title":"Appl Soft Comput"},{"key":"4750_CR20","unstructured":"Liang J, Qu B, Suganthan P (2013a) Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore"},{"key":"4750_CR21","unstructured":"Liang J, Qu B, Suganthan P, Hern\u00e1ndez-D\u00edaz AG (2013b) Problem definitions and evaluation criteria for the cec 2013 special session on real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical Report, vol 201212, no 34, pp 281\u2013295"},{"key":"4750_CR22","doi-asserted-by":"publisher","first-page":"11","DOI":"10.1016\/j.swevo.2015.05.002","volume":"24","author":"N Lynn","year":"2015","unstructured":"Lynn N, Suganthan PN (2015) Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation. Swarm Evol Comput 24:11\u201324","journal-title":"Swarm Evol Comput"},{"issue":"2","key":"4750_CR23","doi-asserted-by":"publisher","first-page":"1679","DOI":"10.1016\/j.asoc.2010.04.024","volume":"11","author":"R Mallipeddi","year":"2011","unstructured":"Mallipeddi R, Suganthan PN, Pan Q-K, Tasgetiren MF (2011) Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl Soft Comput 11(2):1679\u20131696","journal-title":"Appl Soft Comput"},{"issue":"2","key":"4750_CR24","doi-asserted-by":"publisher","first-page":"253","DOI":"10.1007\/s13042-017-0711-7","volume":"10","author":"AW Mohamed","year":"2019","unstructured":"Mohamed AW, Mohamed AK (2019) Adaptive guided differential evolution algorithm with novel mutation for numerical optimization. Int J Mach Learn Cybern 10(2):253\u2013277","journal-title":"Int J Mach Learn Cybern"},{"issue":"10","key":"4750_CR25","doi-asserted-by":"publisher","first-page":"3215","DOI":"10.1007\/s00500-017-2777-2","volume":"22","author":"AW Mohamed","year":"2018","unstructured":"Mohamed AW, Suganthan PN (2018) Real-parameter unconstrained optimization based on enhanced fitness-adaptive differential evolution algorithm with novel mutation. Soft Comput 22(10):3215\u20133235","journal-title":"Soft Comput"},{"key":"4750_CR26","doi-asserted-by":"crossref","unstructured":"Mohamed AW, Hadi AA, Fattouh AM, Jambi KM (2017) LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems. In: 2017 IEEE congress on evolutionary computation (CEC). IEEE, pp 145\u2013152","DOI":"10.1109\/CEC.2017.7969307"},{"key":"4750_CR27","doi-asserted-by":"publisher","first-page":"100455","DOI":"10.1016\/j.swevo.2018.10.006","volume":"50","author":"AW Mohamed","year":"2019","unstructured":"Mohamed AW, Hadi AA, Jambi KM (2019) Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global numerical optimization. Swarm Evol Comput 50:100455","journal-title":"Swarm Evol Comput"},{"issue":"2","key":"4750_CR28","doi-asserted-by":"publisher","first-page":"398","DOI":"10.1109\/TEVC.2008.927706","volume":"13","author":"AK Qin","year":"2009","unstructured":"Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398\u2013417","journal-title":"IEEE Trans Evol Comput"},{"issue":"4","key":"4750_CR29","doi-asserted-by":"publisher","first-page":"995","DOI":"10.1109\/TCYB.2016.2536167","volume":"47","author":"X Qiu","year":"2017","unstructured":"Qiu X, Tan KC, Xu J-X (2017) Multiple exponential recombination for differential evolution. IEEE Trans Cybern 47(4):995\u20131006","journal-title":"IEEE Trans Cybern"},{"issue":"5","key":"4750_CR30","doi-asserted-by":"publisher","first-page":"601","DOI":"10.1109\/TEVC.2011.2161873","volume":"16","author":"B-Y Qu","year":"2012","unstructured":"Qu B-Y, Suganthan PN, Liang J-J (2012) Differential evolution with neighborhood mutation for multimodal optimization. IEEE Trans Evol Comput 16(5):601\u2013614","journal-title":"IEEE Trans Evol Comput"},{"issue":"1","key":"4750_CR31","doi-asserted-by":"publisher","first-page":"27","DOI":"10.1016\/j.asoc.2012.08.038","volume":"13","author":"S Roy","year":"2013","unstructured":"Roy S, Islam SM, Das S, Ghosh S (2013) Multimodal optimization by artificial weed colonies enhanced with localized group search optimizers. Appl Soft Comput 13(1):27\u201346","journal-title":"Appl Soft Comput"},{"issue":"4","key":"4750_CR32","doi-asserted-by":"publisher","first-page":"341","DOI":"10.1023\/A:1008202821328","volume":"11","author":"R Storn","year":"1997","unstructured":"Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341\u2013359","journal-title":"J Glob Optim"},{"key":"4750_CR33","doi-asserted-by":"crossref","unstructured":"Tanabe R, Fukunaga A (2013) Success-history based parameter adaptation for differential evolution. In: 2013 IEEE congress on evolutionary computation. IEEE, pp 71\u201378","DOI":"10.1109\/CEC.2013.6557555"},{"key":"4750_CR34","doi-asserted-by":"crossref","unstructured":"Tanabe R, Fukunaga AS (2014) Improving the search performance of SHADE using linear population size reduction. In: 2014 IEEE congress on evolutionary computation (CEC). IEEE","DOI":"10.1109\/CEC.2014.6900380"},{"issue":"4","key":"4750_CR35","doi-asserted-by":"publisher","first-page":"560","DOI":"10.1109\/TEVC.2014.2360890","volume":"19","author":"L Tang","year":"2015","unstructured":"Tang L, Dong Y, Liu J (2015) Differential evolution with an individual-dependent mechanism. IEEE Trans Evol Comput 19(4):560\u2013574","journal-title":"IEEE Trans Evol Comput"},{"key":"4750_CR36","doi-asserted-by":"publisher","first-page":"130","DOI":"10.1016\/j.neucom.2018.02.038","volume":"290","author":"L Tong","year":"2018","unstructured":"Tong L, Dong M, Jing C (2018) An improved multi-population ensemble differential evolution. Neurocomputing 290:130\u2013147","journal-title":"Neurocomputing"},{"key":"4750_CR37","doi-asserted-by":"publisher","first-page":"329","DOI":"10.1016\/j.ins.2015.09.009","volume":"329","author":"G Wu","year":"2016","unstructured":"Wu G, Mallipeddi R, Suganthan P, Wang R, Chen H (2016) Differential evolution with multi-population based ensemble of mutation strategies. Inf Sci 329:329\u2013345","journal-title":"Inf Sci"},{"key":"4750_CR38","doi-asserted-by":"publisher","first-page":"172","DOI":"10.1016\/j.ins.2017.09.053","volume":"423","author":"G Wu","year":"2018","unstructured":"Wu G, Shen X, Li H, Chen H, Lin A, Suganthan PN (2018) Ensemble of differential evolution variants. Inf Sci 423:172\u2013186","journal-title":"Inf Sci"},{"key":"4750_CR39","doi-asserted-by":"crossref","unstructured":"Yu WJ, Zhang J (2011) Multi-population differential evolution with adaptive parameter control for global optimization. In: Proceedings of the 13th annual conference on Genetic and evolutionary computation\u2014GECCO\u201911. ACM Press","DOI":"10.1145\/2001576.2001724"},{"issue":"5","key":"4750_CR40","doi-asserted-by":"publisher","first-page":"945","DOI":"10.1109\/TEVC.2009.2014613","volume":"13","author":"J Zhang","year":"2009","unstructured":"Zhang J, Sanderson AC (2009) Jade: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945\u2013958","journal-title":"IEEE Trans Evol Comput"},{"issue":"4","key":"4750_CR41","doi-asserted-by":"publisher","first-page":"512","DOI":"10.1109\/TEVC.2012.2206394","volume":"17","author":"J-H Zhong","year":"2013","unstructured":"Zhong J-H, Shen M, Zhang J, Chung HS-H, Shi Y-H, Li Y (2013) A differential evolution algorithm with dual populations for solving periodic railway timetable scheduling problem. IEEE Trans Evol Comput 17(4):512\u2013527","journal-title":"IEEE Trans Evol Comput"},{"key":"4750_CR42","first-page":"1","volume":"99","author":"X-G Zhou","year":"2018","unstructured":"Zhou X-G, Zhang G-J (2018) Differential evolution with underestimation-based multimutation strategy. IEEE Trans Cybern 99:1\u201312","journal-title":"IEEE Trans Cybern"}],"container-title":["Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s00500-020-04750-w.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s00500-020-04750-w\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s00500-020-04750-w.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,2,19]],"date-time":"2021-02-19T08:43:23Z","timestamp":1613724203000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s00500-020-04750-w"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,2,18]]},"references-count":42,"journal-issue":{"issue":"8","published-print":{"date-parts":[[2020,4]]}},"alternative-id":["4750"],"URL":"https:\/\/doi.org\/10.1007\/s00500-020-04750-w","relation":{},"ISSN":["1432-7643","1433-7479"],"issn-type":[{"value":"1432-7643","type":"print"},{"value":"1433-7479","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,2,18]]},"assertion":[{"value":"18 February 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Compliance with ethical standards"}},{"value":"The authors declare that there is no conflict of interest in this paper.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}},{"value":"This article does not contain any studies with human participants or animals performed by any of the authors.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethical approval"}},{"value":"All the coauthors have checked the submission and approved for its submission.","order":4,"name":"Ethics","group":{"name":"EthicsHeading","label":"Informed consent"}}]}}