{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T05:16:43Z","timestamp":1726204603719},"reference-count":61,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2014,3,25]],"date-time":"2014-03-25T00:00:00Z","timestamp":1395705600000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Soft Comput"],"published-print":{"date-parts":[[2015,2]]},"DOI":"10.1007\/s00500-014-1257-1","type":"journal-article","created":{"date-parts":[[2014,3,24]],"date-time":"2014-03-24T12:03:10Z","timestamp":1395662590000},"page":"353-373","source":"Crossref","is-referenced-by-count":15,"title":["Combinatorial neighborhood topology bumble bees mating optimization for the vehicle routing problem with stochastic demands"],"prefix":"10.1007","volume":"19","author":[{"given":"Yannis","family":"Marinakis","sequence":"first","affiliation":[]},{"given":"Magdalene","family":"Marinaki","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2014,3,25]]},"reference":[{"key":"1257_CR1","unstructured":"Abbass HA (2001a) A monogenous MBO approach to satisfiability. In: Proceeding of the international conference on computational intelligence for modelling, control and automation, CIMCA\u20192001, Las Vegas"},{"key":"1257_CR2","unstructured":"Abbass HA (2001b) Marriage in honey-bee optimization (MBO): a haplometrosis polygynous swarming approach. In: The congress on evolutionary computation (CEC2001), Seoul, May 2001, pp 207\u2013214"},{"key":"1257_CR3","doi-asserted-by":"crossref","first-page":"452","DOI":"10.1016\/j.jfranklin.2006.06.001","volume":"344","author":"A Afshar","year":"2007","unstructured":"Afshar A, Haddad OB, Marino MA, Adams BJ (2007) Honey-bee mating optimization (HBMO) algorithm for optimal reservoir operation. J Frankl Inst 344:452\u2013462","journal-title":"J Frankl Inst"},{"key":"1257_CR4","volume-title":"Swarm intelligence, focus on ant and particle swarm optimization","author":"A Baykasoglu","year":"2007","unstructured":"Baykasoglu A, Ozbakir L, Tapkan P (2007) Artificial bee colony algorithm and its application to generalized assignment problem. In: Chan FTS, Tiwari MK (eds) Swarm intelligence, focus on ant and particle swarm optimization. I-Tech Education and Publishing, Austria"},{"issue":"6","key":"1257_CR5","doi-asserted-by":"crossref","first-page":"977","DOI":"10.1287\/opre.1040.0124","volume":"52","author":"RW Bent","year":"2004","unstructured":"Bent RW, Van Hentenryck P (2004) Scenario-based planning for partially dynamic vehicle routing with stochastic customers. Oper Res 52(6):977\u2013987","journal-title":"Oper Res"},{"issue":"1","key":"1257_CR6","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1007\/s10852-005-9033-y","volume":"5","author":"L Bianchi","year":"2006","unstructured":"Bianchi L, Birattari M, Manfrin M, Mastrolilli M, Paquete L, Rossi-Doria O, Schiavinotto T (2006) Hybrid metaheuristics for the vehicle routing problem with stochastic demands. J Math Model Algorithms 5(1):91\u2013110","journal-title":"J Math Model Algorithms"},{"issue":"2","key":"1257_CR7","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1007\/s11047-008-9098-4","volume":"8","author":"L Bianchi","year":"2009","unstructured":"Bianchi L, Dorigo M, Gambardella LM, Gutjahr WJ (2009) A survey on metaheuristics for stochastic combinatorial optimization. Nat Comput 8(2):239\u2013287","journal-title":"Nat Comput"},{"key":"1257_CR8","doi-asserted-by":"crossref","first-page":"773","DOI":"10.1016\/j.orl.2006.12.009","volume":"35","author":"CH Christiansen","year":"2007","unstructured":"Christiansen CH, Lysgaard J (2007) A branch-and-price algorithm for the capacitated vehicle routing problem with stochastic demands. Oper Res Lett 35:773\u2013781","journal-title":"Oper Res Lett"},{"key":"1257_CR9","doi-asserted-by":"crossref","unstructured":"Drias H, Sadeg S, Yahi S (2005) Cooperative bees swarm for solving the maximum weighted satisfiability problem. In: Proceeding of IWAAN international work conference on artificial and natural neural networks, LNCS 3512:318\u2013325","DOI":"10.1007\/11494669_39"},{"key":"1257_CR10","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF01415995","volume":"37","author":"M Dror","year":"1993","unstructured":"Dror M, Laporte G, Louveaux FV (1993) Vehicle routing with stochastic demands and restricted failures. ZOR Methods Models Oper Res 37:273\u2013283","journal-title":"ZOR Methods Models Oper Res"},{"key":"1257_CR11","doi-asserted-by":"crossref","first-page":"1502","DOI":"10.1016\/j.amc.2007.02.029","volume":"190","author":"M Fathian","year":"2007","unstructured":"Fathian M, Amiri B, Maroosi A (2007) Application of honey bee mating optimization algorithm on clustering. Appl Math Comput 190:1502\u20131513","journal-title":"Appl Math Comput"},{"key":"1257_CR12","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/0377-2217(95)00050-X","volume":"88","author":"M Gendreau","year":"1996","unstructured":"Gendreau M, Laport G, Seguin R (1996) Stochastic vehicle routing. Eur J Oper Res 88:3\u201312","journal-title":"Eur J Oper Res"},{"key":"1257_CR13","doi-asserted-by":"crossref","unstructured":"Glover F, Laguna M, Marti R (2003) Scatter search and path relinking: advances and spplications. In: Glover F, Kochenberger GA (eds) Handbook of metaheuristics. Kluwer Academic, Boston, pp 1\u201336","DOI":"10.1007\/0-306-48056-5_1"},{"key":"1257_CR14","doi-asserted-by":"crossref","first-page":"312","DOI":"10.1016\/j.ejor.2011.09.023","volume":"217","author":"JC Goodson","year":"2012","unstructured":"Goodson JC, Ohlmann JW, Thomas BW (2012) Cyclic-order neighborhoods with application to the vehicle routing problem with stochastic demand. Eur J Oper Res 217:312\u2013323","journal-title":"Eur J Oper Res"},{"key":"1257_CR15","first-page":"1449","volume":"2","author":"ZG Guo","year":"2004","unstructured":"Guo ZG, Mac KL (2004) A Heuristic algorithm for the stochastic vehicle routing problems with soft time windows. Congr Evolut Comput 2:1449\u20131456","journal-title":"Congr Evolut Comput"},{"key":"1257_CR16","doi-asserted-by":"crossref","first-page":"661","DOI":"10.1007\/s11269-005-9001-3","volume":"20","author":"OB Haddad","year":"2006","unstructured":"Haddad OB, Afshar A, Marino MA (2006) Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization. Water Resour Manag 20:661\u2013680","journal-title":"Water Resour Manag"},{"key":"1257_CR17","doi-asserted-by":"crossref","first-page":"449","DOI":"10.1016\/S0377-2217(00)00100-4","volume":"130","author":"P Hansen","year":"2001","unstructured":"Hansen P, Mladenovic N (2001) Variable neighborhood search: Principles and applications. Eur J Oper Res 130:449\u2013467","journal-title":"Eur J Oper Res"},{"key":"1257_CR18","doi-asserted-by":"crossref","first-page":"997","DOI":"10.1016\/j.ejor.2005.11.070","volume":"180","author":"D Haugland","year":"2007","unstructured":"Haugland D, Ho SC, Laporte G (2007) Designing delivery districts for the vehicle routing problem with stochastic demands. Eur J Oper Res 180:997\u20131010","journal-title":"Eur J Oper Res"},{"key":"1257_CR19","unstructured":"Hvattum LM, Lkketangen A, Laporte G (2004) A Heuristic solution method to a stochastic vehicle routing problem. In: Proceedings of TRISTAN V-The fifth triennial symposium on transportation analysis"},{"key":"1257_CR20","doi-asserted-by":"crossref","unstructured":"Juan AA, Faulin J, Jorba J, Caceres J, Marques JM (2012) Using parallel and distributed computing for real-time solving of vehicle routing problems with stochastic demands. Ann Oper Res. doi: 10.1007\/s10479-011-0918-z","DOI":"10.1007\/s10479-011-0918-z"},{"key":"1257_CR21","doi-asserted-by":"crossref","first-page":"751","DOI":"10.1016\/j.trc.2010.09.007","volume":"19","author":"A Juan","year":"2011","unstructured":"Juan A, Faulin J, Grasman S, Riera D, Marull J, Mendez C (2011) Using safety stocks and simulation to solve the vehicle routing problem with stochastic demands. Transp Res Part C 19:751\u2013765","journal-title":"Transp Res Part C"},{"key":"1257_CR22","doi-asserted-by":"crossref","first-page":"459","DOI":"10.1007\/s10898-007-9149-x","volume":"39","author":"D Karaboga","year":"2007","unstructured":"Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39:459\u2013471","journal-title":"J Global Optim"},{"key":"1257_CR23","doi-asserted-by":"crossref","first-page":"687","DOI":"10.1016\/j.asoc.2007.05.007","volume":"8","author":"D Karaboga","year":"2008","unstructured":"Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8:687\u2013697","journal-title":"Appl Soft Comput"},{"key":"1257_CR24","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1007\/s10462-009-9127-4","volume":"31","author":"D Karaboga","year":"2009","unstructured":"Karaboga D, Akay B (2009) A survey: algorithms simulating bee swarm intelligence. Artif Intell Rev 31:61\u201385","journal-title":"Artif Intell Rev"},{"key":"1257_CR25","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1287\/trsc.37.1.69.12820","volume":"37","author":"AS Kenyon","year":"2003","unstructured":"Kenyon AS, Morton DP (2003) Stochastic vehicle routing with random travel times. Transp Sci 37:69\u201382","journal-title":"Transp Sci"},{"key":"1257_CR26","doi-asserted-by":"crossref","first-page":"1775","DOI":"10.1016\/j.cor.2011.02.007","volume":"38","author":"H Lei","year":"2011","unstructured":"Lei H, Laporte G, Guo B (2011) The capacitated vehicle routing problem with stochastic demands and time windows. Comput Oper Res 38:1775\u20131783","journal-title":"Comput Oper Res"},{"key":"1257_CR27","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/j.ijpe.2010.01.013","volume":"125","author":"X Li","year":"2010","unstructured":"Li X, Tian P, Leung SCH (2010) Vehicle routing problems with time windows and stochastic travel and service times: models and algorithm. Int J Prod Econ 125:137\u2013145","journal-title":"Int J Prod Econ"},{"key":"1257_CR28","unstructured":"Lourenco HR, Martin O, St\u00fctzle T (2002) Iterated local search. Handbook of metaheuristics. In: Operations research and management science, vol. 57, pp 321\u2013353. Kluwer Academic, Boston"},{"key":"1257_CR29","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1007\/978-3-540-78987-1_13","volume-title":"Nature inspired cooperative strategies for optimization\u2014NICSO 2007","author":"Y Marinakis","year":"2008","unstructured":"Marinakis Y, Marinaki M, Dounias G (2008a) Honey bees mating optimization algorithm for the vehicle routing problem. In: Krasnogor N, Nicosia G, Pavone M, Pelta D (eds) Nature inspired cooperative strategies for optimization\u2014NICSO 2007. Springer, Berlin, pp 139\u2013148 Studies in Computational Intelligence"},{"key":"1257_CR30","volume-title":"A hybrid clustering algorithm based on honey bees mating optimization and greedy randomized adaptive search procedure. Learning and intelligence optimization\u2014LION 2007, LNCS 5313","author":"Y Marinakis","year":"2008","unstructured":"Marinakis Y, Marinaki M, Matsatsinis N (2008b) A hybrid clustering algorithm based on honey bees mating optimization and greedy randomized adaptive search procedure. Learning and intelligence optimization\u2014LION 2007, LNCS 5313. Springer, Berlin"},{"key":"1257_CR31","doi-asserted-by":"crossref","unstructured":"Marinakis Y, Marinaki M, Matsatsinis N (2008c) Honey bees mating optimization for the location routing problem. In: Proceeding of IEEE international engineering management conference (IEMC\u2014Europe 2008), Estoril, Portugal","DOI":"10.1109\/IEMCE.2008.4618013"},{"key":"1257_CR32","doi-asserted-by":"crossref","unstructured":"Marinakis Y, Marinaki M (2009) A hybrid honey bees mating optimization algorithm for the probabilistic traveling salesman problem. In: Proceeding of IEEE congress on evolutionary computation (CEC 2009), Trondheim, Norway","DOI":"10.1109\/CEC.2009.4983154"},{"key":"1257_CR33","first-page":"549","volume-title":"HAIS 2009, LN 5572","author":"Y Marinakis","year":"2009","unstructured":"Marinakis Y, Marinaki M, Matsatsinis N (2009) A hybrid bumble bees mating optimization\u2014GRASP algorithm for clustering. In: Corchado E (ed) HAIS 2009, LN 5572. Springer, Berlin, pp 549\u2013556"},{"key":"1257_CR34","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1007\/s11047-009-9136-x","volume":"9","author":"Y Marinakis","year":"2010","unstructured":"Marinakis Y, Marinaki M, Dounias G (2010a) Honey bees mating optimization algorithm for large scale vehicle routing problems. Nat Comput 9:5\u201327","journal-title":"Nat Comput"},{"key":"1257_CR35","first-page":"305","volume-title":"Nature inspired cooperative strategies for optimization\u2014NICSO 2010","author":"Y Marinakis","year":"2010","unstructured":"Marinakis Y, Marinaki M, Matsatsinis N (2010b) A Bumble bees mating optimization algorithm for global unconstrained optimization problems. In: Gonzalez JR (ed) Nature inspired cooperative strategies for optimization\u2014NICSO 2010. Springer, Berlin, pp 305\u2013318 Studies in Computational Intelligence"},{"key":"1257_CR36","doi-asserted-by":"crossref","first-page":"806","DOI":"10.1016\/j.asoc.2009.09.010","volume":"10","author":"M Marinaki","year":"2010","unstructured":"Marinaki M, Marinakis Y, Zopounidis C (2010c) Honey bees mating optimization algorithm for financial classification problems. Appl Soft Comput 10:806\u2013812","journal-title":"Appl Soft Comput"},{"key":"1257_CR37","first-page":"347","volume-title":"Handbook of swarm intelligence\u2014concepts, principles and applications, aeries on adaptation, learning, and optimization 8","author":"Y Marinakis","year":"2011","unstructured":"Marinakis Y, Marinaki M (2011) Bumble bees mating optimization algorithm for the vehicle routing problem. In: Panigrahi BK, Shi Y, Lim M-H (eds) Handbook of swarm intelligence\u2014concepts, principles and applications, aeries on adaptation, learning, and optimization 8. Springer, Berlin, pp 347\u2013369"},{"key":"1257_CR38","doi-asserted-by":"crossref","unstructured":"Marinaki M, Marinakis Y (2013a) A Honey bees mating optimization algorithm with path relinking for the vehicle routing problem with stochastic demands (submitted)","DOI":"10.1016\/j.swevo.2013.12.003"},{"key":"1257_CR39","doi-asserted-by":"crossref","unstructured":"Marinakis Y, Marinaki M (2013b) Combinatorial neighborhood topology particle swarm optimization algorithm for the vehicle routing problem. In: Middendorf M, Blum C (eds) EvoCOP 2013, LNCS 7832, pp 133\u2013144","DOI":"10.1007\/978-3-642-37198-1_12"},{"key":"1257_CR40","doi-asserted-by":"crossref","unstructured":"Marinakis Y, Marinaki M (2013c) Combinatorial expanding neighborhood topology particle swarm optimization for the vehicle routing problem with stochastic demands. In: GECCO: 2013, genetic and evolutionary computation conference, 6\u201310 July 2013, Amsterdam, The Netherlands","DOI":"10.1145\/2463372.2463375"},{"key":"1257_CR41","doi-asserted-by":"crossref","first-page":"1693","DOI":"10.1016\/j.asoc.2013.01.007","volume":"13","author":"Y Marinakis","year":"2013","unstructured":"Marinakis Y, Iordanidou GR, Marinaki M (2013a) Particle swarm optimization for the vehicle routing problem with stochastic demands. Appl Soft Comput 13:1693\u20131704","journal-title":"Appl Soft Comput"},{"key":"1257_CR42","unstructured":"Marinakis Y, Marinaki M, Spanou P (2013b) A Memetic differential evolution algorithm for vehicle routing problem with stochastic demands and customers (submitted)"},{"key":"1257_CR43","unstructured":"Martin O, Otto SW, Felten EW (1991) Large-step markov chains for the traveling salesman problem. Complex Syst 5(3):299\u2013326"},{"key":"1257_CR44","doi-asserted-by":"crossref","first-page":"1886","DOI":"10.1016\/j.cor.2009.06.015","volume":"37","author":"JE Mendoza","year":"2010","unstructured":"Mendoza JE, Castaniera B, Guereta C, Medagliab AL, Velascob N (2010) A memetic algorithm for the multi-compartment vehicle routing problem with stochastic demands. Comput Oper Res 37:1886\u20131898","journal-title":"Comput Oper Res"},{"key":"1257_CR45","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/j.ejor.2011.03.011","volume":"213","author":"I Minis","year":"2011","unstructured":"Minis I, Tatarakis A (2011) Stochastic single vehicle routing problem with delivery and pick up and a predefined customer sequence. Eur J Oper Res 213:37\u201351","journal-title":"Eur J Oper Res"},{"key":"1257_CR46","doi-asserted-by":"crossref","first-page":"509","DOI":"10.1016\/j.ejor.2008.03.023","volume":"196","author":"C Novoa","year":"2009","unstructured":"Novoa C, Storer R (2009) An approximate dynamic programming approach for the vehicle routing problem with stochastic demands. Eur J Oper Res 196:509\u2013515","journal-title":"Eur J Oper Res"},{"key":"1257_CR47","doi-asserted-by":"crossref","unstructured":"Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2006) The bees algorithm\u2014a novel tool for complex optimization problems. In: IPROMS 2006 proceeding 2nd international virtual conference on intelligent production machines and systems, Oxford, Elsevier","DOI":"10.1016\/B978-008045157-2\/50081-X"},{"key":"1257_CR48","doi-asserted-by":"crossref","unstructured":"Protonotarios M, Mourkousis G, Vyridis I, Varvarigou T (2000) Very large scale vehicle routing with time windows and stochastic demand using genetic algorithms with parallel fitness evaluation. HPCN 2000, LNCS 1823, pp 467\u2013476","DOI":"10.1007\/3-540-45492-6_47"},{"key":"1257_CR49","first-page":"764","volume-title":"Advanced OR and AI methods in transportation","author":"M Reimann","year":"2005","unstructured":"Reimann M (2005) Analyzing a vehicle routing problem with stochastic demands using ant colony optimization. In: Jaszkiewicz A, Kaczmarek M, Zak J, Kubiak M (eds) Advanced OR and AI methods in transportation. Publishing House of Poznan University of Technology, Poland, pp 764\u2013769"},{"key":"1257_CR50","doi-asserted-by":"crossref","first-page":"1201","DOI":"10.1016\/S0305-0548(99)00146-X","volume":"27","author":"N Secomandi","year":"2000","unstructured":"Secomandi N (2000) Comparing neuro-dynamic programming algorithms for the vehicle routing problem with stochastic demands. Comput Oper Res 27:1201\u20131225","journal-title":"Comput Oper Res"},{"key":"1257_CR51","unstructured":"Shen Z, Dessouky M, Ordonez F (2005) The stochastic vehicle routing problem for large-scale emergencies. Technical Report 2005\u201306, Department of Industrial and Systems Engineering, University of Southern California"},{"key":"1257_CR52","doi-asserted-by":"crossref","first-page":"371","DOI":"10.1016\/0377-2217(83)90237-0","volume":"14","author":"WR Stewart","year":"1983","unstructured":"Stewart WR, Golden BL (1983) Stochastic vehicle routing: a comprehensive approach. Eur J Oper Res 14:371\u2013385","journal-title":"Eur J Oper Res"},{"key":"1257_CR53","doi-asserted-by":"crossref","DOI":"10.1002\/9780470496916","volume-title":"Metaheuristics: from design to implementation","author":"E-G Talbi","year":"2009","unstructured":"Talbi E-G (2009) Metaheuristics: from design to implementation. Wiley, USA"},{"key":"1257_CR54","doi-asserted-by":"crossref","first-page":"813","DOI":"10.1016\/j.ejor.2005.12.029","volume":"177","author":"KC Tan","year":"2007","unstructured":"Tan KC, Cheong CY, Goh CK (2007) Solving multiobjective vehicle routing problem with stochastic demand via evolutionary computation. Eur J Oper Res 177:813\u2013839","journal-title":"Eur J Oper Res"},{"issue":"2","key":"1257_CR55","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1142\/S146902680300094X","volume":"3","author":"J Teo","year":"2003","unstructured":"Teo J, Abbass HA (2003) A true annealing approach to the marriage in honey bees optimization algorithm. Int J Comput Intell Appl 3(2):199\u2013211","journal-title":"Int J Comput Intell Appl"},{"key":"1257_CR56","unstructured":"Teodorovic D, Dell\u2019Orco M (2005) Bee colony optimization\u2014a cooperative learning approach to complex transportation problems. In: Advanced OR and AI methods in transportation, Proceedings of the 16th mini\u2014EURO conference and 10th meeting of EWGT, pp 51\u201360"},{"key":"1257_CR57","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1287\/trsc.3.3.192","volume":"3","author":"F Tillman","year":"1969","unstructured":"Tillman F (1969) The multiple terminal delivery problem with probabilistic demands. Transp Sci 3:192\u2013204","journal-title":"Transp Sci"},{"key":"1257_CR58","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1007\/978-3-540-28646-2_8","volume-title":"Ant colony optimization and swarm intelligence, LNCS 3172","author":"HF Wedde","year":"2004","unstructured":"Wedde HF, Farooq M, Zhang Y (2004) BeeHive: an efficient fault-tolerant routing algorithm inspired by honey bee behavior. In: Dorigo M (ed) Ant colony optimization and swarm intelligence, LNCS 3172. Springer, Berlin, pp 83\u201394"},{"key":"1257_CR59","first-page":"572","volume":"40","author":"S Yan","year":"2006","unstructured":"Yan S, Chi CJ, Tang CH (2006) Inter-city bus routing and timetable setting under stochastic demands. Transp Res Part A 40:572\u2013586","journal-title":"Transp Res Part A"},{"key":"1257_CR60","doi-asserted-by":"crossref","unstructured":"Yang JM, Alvarez JR (eds) (2005) Engineering optimizations via nature-inspired virtual bee algorithms. IWINAC 2005, LNCS 3562. Springer, Berlin, pp 317\u2013323","DOI":"10.1007\/11499305_33"},{"key":"1257_CR61","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1287\/trsc.34.1.99.12278","volume":"34","author":"WH Yang","year":"2000","unstructured":"Yang WH, Mathur K, Ballou RH (2000) Stochastic vehicle routing problem with restocking. Transp Sci 34:99\u2013112","journal-title":"Transp Sci"}],"container-title":["Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s00500-014-1257-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s00500-014-1257-1\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s00500-014-1257-1","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,8,8]],"date-time":"2019-08-08T21:12:47Z","timestamp":1565298767000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s00500-014-1257-1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014,3,25]]},"references-count":61,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2015,2]]}},"alternative-id":["1257"],"URL":"https:\/\/doi.org\/10.1007\/s00500-014-1257-1","relation":{},"ISSN":["1432-7643","1433-7479"],"issn-type":[{"value":"1432-7643","type":"print"},{"value":"1433-7479","type":"electronic"}],"subject":[],"published":{"date-parts":[[2014,3,25]]}}}