{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T03:05:01Z","timestamp":1740107101260,"version":"3.37.3"},"reference-count":40,"publisher":"Springer Science and Business Media LLC","issue":"11","license":[{"start":{"date-parts":[[2023,12,29]],"date-time":"2023-12-29T00:00:00Z","timestamp":1703808000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,12,29]],"date-time":"2023-12-29T00:00:00Z","timestamp":1703808000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62061040","12162029"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004772","name":"Natural Science Foundation of Ningxia Province","doi-asserted-by":"publisher","award":["2018AAC03014"],"id":[{"id":"10.13039\/501100004772","id-type":"DOI","asserted-by":"publisher"}]},{"name":"the Key Research and Development Plan in Ningxia District under Grant","award":["2019BEG03056"]},{"name":"Scientific Research Fund of Ningxia University","award":["NYG2022018"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Vis Comput"],"published-print":{"date-parts":[[2024,11]]},"DOI":"10.1007\/s00371-023-03213-1","type":"journal-article","created":{"date-parts":[[2023,12,29]],"date-time":"2023-12-29T16:02:06Z","timestamp":1703865726000},"page":"7871-7885","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Local image segmentation model via Hellinger distance"],"prefix":"10.1007","volume":"40","author":[{"given":"Guojun","family":"Liu","sequence":"first","affiliation":[]},{"given":"Jianhui","family":"Guo","sequence":"additional","affiliation":[]},{"given":"Yazhen","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Xiangguo","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Wentao","family":"Ma","sequence":"additional","affiliation":[]},{"given":"Rui","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,12,29]]},"reference":[{"issue":"4","key":"3213_CR1","doi-asserted-by":"publisher","first-page":"321","DOI":"10.1007\/BF00133570","volume":"1","author":"M Kass","year":"1988","unstructured":"Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models[J]. Int. J. Comput. Vis. 1(4), 321\u2013331 (1988)","journal-title":"Int. J. Comput. Vis."},{"issue":"12","key":"3213_CR2","doi-asserted-by":"publisher","first-page":"3243","DOI":"10.1109\/TIP.2010.2069690","volume":"19","author":"CM Li","year":"2010","unstructured":"Li, C.M., Xu, C.Y., Gui, C.F.: Distance regularized level set evolution and its application to image segmentation[J]. IEEE Trans. Image Process. 19(12), 3243\u20133254 (2010)","journal-title":"IEEE Trans. Image Process."},{"key":"3213_CR3","doi-asserted-by":"publisher","first-page":"61","DOI":"10.1023\/A:1007979827043","volume":"22","author":"V Caselles","year":"1997","unstructured":"Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours[J]. Int. J. Comput. Vision 22, 61\u201379 (1997)","journal-title":"Int. J. Comput. Vision"},{"issue":"11","key":"3213_CR4","doi-asserted-by":"publisher","first-page":"1947","DOI":"10.1016\/j.patcog.2004.12.015","volume":"38","author":"C Li","year":"2005","unstructured":"Li, C., Liu, J., Fox, M.D.: Segmentation of external force field for automatic initialization and splitting of snakes[J]. Pattern Recogn. 38(11), 1947\u20131960 (2005)","journal-title":"Pattern Recogn."},{"key":"3213_CR5","doi-asserted-by":"crossref","unstructured":"Li, C., Kao, C. Y., Gore, J. C., et al.: Implicit active contours driven by local binary fitting energy[C]. Computer Vision and Pattern Recognition, (2007)","DOI":"10.1109\/CVPR.2007.383014"},{"key":"3213_CR6","doi-asserted-by":"publisher","first-page":"257","DOI":"10.1016\/j.ijleo.2019.01.009","volume":"182","author":"HZ Pan","year":"2019","unstructured":"Pan, H.Z., Liu, W.Q., Zhou, G.L.: A novel level set approach for image segmentation with landmark constraints[J]. Int. J. Light Electron Opt. 182, 257\u2013268 (2019)","journal-title":"Int. J. Light Electron Opt."},{"issue":"4","key":"3213_CR7","doi-asserted-by":"publisher","first-page":"1199","DOI":"10.1016\/j.patcog.2009.10.010","volume":"43","author":"KH Zhang","year":"2010","unstructured":"Zhang, K.H., Song, H., Zhang, L.: Active contours driven by local image fitting energy[J]. Pattern Recogn. 43(4), 1199\u20131206 (2010)","journal-title":"Pattern Recogn."},{"key":"3213_CR8","doi-asserted-by":"publisher","first-page":"245","DOI":"10.1016\/j.neucom.2018.05.070","volume":"311","author":"H Min","year":"2018","unstructured":"Min, H., Lu, J.T., Jia, W., et al.: An effective local regional model based on salient fitting for image segmentation[J]. Neurocomputing 311, 245\u2013259 (2018)","journal-title":"Neurocomputing"},{"key":"3213_CR9","doi-asserted-by":"publisher","first-page":"61","DOI":"10.1016\/j.ins.2017.06.042","volume":"418","author":"L Wang","year":"2017","unstructured":"Wang, L., Chang, Y., Wang, H.: An active contour model based on local fitted images for image segmentation[J]. Inf. Sci. 418, 61\u201373 (2017)","journal-title":"Inf. Sci."},{"issue":"8","key":"3213_CR10","doi-asserted-by":"publisher","first-page":"679","DOI":"10.1109\/TPAMI.1986.4767851","volume":"6","author":"J Canny","year":"1986","unstructured":"Canny, J.: A computational approach to edge detection[J]. IEEE Trans. Pattern Anal. Mach. Intell. 6(8), 679\u2013698 (1986)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"3213_CR11","unstructured":"Sobel, I.: Camera models and machine perception[J]. Dissertation Stanford University, (1970)"},{"key":"3213_CR12","doi-asserted-by":"publisher","first-page":"89","DOI":"10.1016\/j.jvcir.2019.01.001","volume":"59","author":"C Liu","year":"2019","unstructured":"Liu, C., Liu, W., Xing, W.: A weighted edge-based level set method based on multi-local statistical information for noisy image segmentation[J]. J. Vis. Commun. Image Rep. 59, 89\u2013107 (2019)","journal-title":"J. Vis. Commun. Image Rep."},{"key":"3213_CR13","doi-asserted-by":"publisher","first-page":"241","DOI":"10.1016\/j.patcog.2018.03.010","volume":"80","author":"X Zhi","year":"2018","unstructured":"Zhi, X., Shen, H.B.: Saliency driven region-edge-based top down level set evolution reveals the asynchronous focus in image segmentation[J]. Pattern Recogn. J. Pattern Recogn. Soc. 80, 241\u2013255 (2018)","journal-title":"Pattern Recogn. J. Pattern Recogn. Soc."},{"issue":"2","key":"3213_CR14","doi-asserted-by":"publisher","first-page":"266","DOI":"10.1109\/83.902291","volume":"10","author":"T Chan","year":"2001","unstructured":"Chan, T., Vese, L.: Active contour without edges[J]. IEEE Trans. Image Process. 10(2), 266\u2013277 (2001)","journal-title":"IEEE Trans. Image Process."},{"issue":"5","key":"3213_CR15","doi-asserted-by":"publisher","first-page":"577","DOI":"10.1002\/cpa.3160420503","volume":"42","author":"D Mumford","year":"1989","unstructured":"Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems[J]. Commun. Pure Appl. Math. 42(5), 577\u2013685 (1989)","journal-title":"Commun. Pure Appl. Math."},{"key":"3213_CR16","doi-asserted-by":"crossref","unstructured":"Ma, C., He, T., Gao, J.: Skin scar segmentation based on saliency detection[J]. Vis. Comput. 1\u201313 (2022)","DOI":"10.1007\/s00371-022-02635-7"},{"key":"3213_CR17","unstructured":"Chen, L. C., Papandreou, G., Kokkinos, I., et al.: Semantic image segmentation with deep convolutional nets and fully connected CRFs[C]. International Conference on Learning Representations, (2014)"},{"issue":"40","key":"3213_CR18","doi-asserted-by":"publisher","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","volume":"4","author":"LC Chen","year":"2018","unstructured":"Chen, L.C., Papandreou, G., Kokkinos, I., et al.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Trans. Pattern Anal. Mach. Intell. 4(40), 834\u2013848 (2018)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"3213_CR19","doi-asserted-by":"crossref","unstructured":"Chen, L. C., Papandreou, G., Schroff, F., et al.: Rethinking atrous convolution for semantic image segmentation[J]. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, 851\u2013859","DOI":"10.1007\/978-3-030-01234-2_49"},{"issue":"13","key":"3213_CR20","doi-asserted-by":"publisher","first-page":"119","DOI":"10.3390\/rs13010119","volume":"1","author":"S Ouyang","year":"2020","unstructured":"Ouyang, S., Li, Y.: Combining deep semantic segmentation network and graph convolutional neural network for semantic segmentation of remote sensing Imagery[J]. Remote Sens. 1(13), 119\u2013140 (2020)","journal-title":"Remote Sens."},{"issue":"37","key":"3213_CR21","doi-asserted-by":"publisher","first-page":"1101","DOI":"10.1007\/s00371-020-01855-z","volume":"5","author":"D Wang","year":"2021","unstructured":"Wang, D., Hu, G., Lyu, C.: FRNet: an end-to-end feature refinement neural network for medical image segmentation[J]. Vis. Comput. 5(37), 1101\u20131112 (2021)","journal-title":"Vis. Comput."},{"key":"3213_CR22","doi-asserted-by":"publisher","first-page":"206","DOI":"10.1016\/j.spl.2009.10.008","volume":"80","author":"A Basu","year":"2010","unstructured":"Basu, A., Mandal, A., Pardo, L.: Hypothesis testing for two discrete populations based on the Hellinger distance[J]. Statist. Probab. Lett. 80, 206\u2013214 (2010)","journal-title":"Statist. Probab. Lett."},{"key":"3213_CR23","unstructured":"Merabet, Y. E., Ruichek, Y., Ghaffarian, S., et al.: Hellinger Kernel-based distance and local image region descriptors for sky region detection from fisheye images[C]. International Joint Conference on Computer Vision, 2017."},{"key":"3213_CR24","unstructured":"Bouhlel, N., Meric, S.: Multilook polarimetric SAR change detection using stochastic distances between Matrix-Variate G(d)(0) distributions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 1\u201321."},{"key":"3213_CR25","doi-asserted-by":"publisher","first-page":"5402","DOI":"10.1109\/TIP.2021.3079798","volume":"99","author":"B Wang","year":"2021","unstructured":"Wang, B., Tao, D., Dong, R., et al.: A contour co-tracking method for image pairs[J]. IEEE Trans. Image Process. 99, 5402\u20135412 (2021)","journal-title":"IEEE Trans. Image Process."},{"key":"3213_CR26","doi-asserted-by":"publisher","first-page":"898","DOI":"10.1109\/TPAMI.2010.161","volume":"33","author":"P Arbelaez","year":"2011","unstructured":"Arbelaez, P., Maire, M., Fowlkes, C., et al.: Contour detection and hierarchical image segmentation[J]. IEEE Trans. Pattern Anal. Mach. Intell. 33, 898\u2013916 (2011)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"9","key":"3213_CR27","doi-asserted-by":"publisher","first-page":"462","DOI":"10.3390\/fractalfract6090462","volume":"6","author":"XG Liu","year":"2022","unstructured":"Liu, X.G., Liu, G.J., Wang, Y.Z., Li, G.S., Zhang, R., Peng, W.C.: A variational level set image segmentation method via fractional differentiation[J]. Fractal Fract. 6(9), 462 (2022)","journal-title":"Fractal Fract."},{"key":"3213_CR28","doi-asserted-by":"publisher","first-page":"201","DOI":"10.1016\/j.image.2019.05.006","volume":"76","author":"D Ma","year":"2019","unstructured":"Ma, D., Liao, Q., Chen, Z., et al.: Adaptive local-fitting-based active contour model for medical image segmentation[J]. Signal Process. Image Commun. 76, 201\u2013213 (2019)","journal-title":"Signal Process. Image Commun."},{"issue":"8","key":"3213_CR29","doi-asserted-by":"publisher","first-page":"1426","DOI":"10.1109\/TCYB.2014.2352343","volume":"45","author":"KH Zhang","year":"2014","unstructured":"Zhang, K.H., Liu, Q.S., Song, H.: A variational approach to simultaneous image segmentation and bias correction[J]. Trans. Cybern. 45(8), 1426\u20131437 (2014)","journal-title":"Trans. Cybern."},{"issue":"12","key":"3213_CR30","doi-asserted-by":"publisher","first-page":"2435","DOI":"10.1016\/j.sigpro.2009.03.014","volume":"89","author":"L Wang","year":"2009","unstructured":"Wang, L., He, L., Mishra, A.: Active contours driven by local Gaussian distribution fitting energy[J]. Signal Process. 89(12), 2435\u20132447 (2009)","journal-title":"Signal Process."},{"key":"3213_CR31","doi-asserted-by":"publisher","DOI":"10.1016\/j.sigpro.2023.109105","volume":"211","author":"W Samad","year":"2023","unstructured":"Samad, W., Chunming, L., Mudassar, I., et al.: Level-set evolution for medical image segmentation with alternating direction method of multipliers[J]. Signal Process. 211, 109105 (2023)","journal-title":"Signal Process."},{"key":"3213_CR32","doi-asserted-by":"publisher","first-page":"224","DOI":"10.1016\/j.sigpro.2016.12.021","volume":"134","author":"GR Weng","year":"2017","unstructured":"Weng, G.R., XiaoL, F., Ding, K.Y.: Active contours driven by region-scalable fitting and optimized Laplacian of Gaussian energy for image segmentation[J]. Signal Process. 134, 224\u2013233 (2017)","journal-title":"Signal Process."},{"key":"3213_CR33","doi-asserted-by":"publisher","first-page":"29","DOI":"10.1016\/j.patrec.2018.01.019","volume":"104","author":"K Ding","year":"2018","unstructured":"Ding, K., Xiao, L., Weng, G.: Active contours driven by local pre-fitting energy for fast image segmentation[J]. Pattern Recogn. Lett. 104, 29\u201336 (2018)","journal-title":"Pattern Recogn. Lett."},{"key":"3213_CR34","first-page":"1","volume":"99","author":"J Fang","year":"2019","unstructured":"Fang, J., Liu, H., Zhang, L., et al.: Fuzzy region-based active contours driven by weighting global and local fitting energy[J]. IEEE Access 99, 1\u201319 (2019)","journal-title":"IEEE Access"},{"key":"3213_CR35","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.eswa.2021.115633","volume":"185","author":"G Weng","year":"2021","unstructured":"Weng, G., Dong, B., Lei, Y.: A level set method based on additive bias correction for image segmentation[J]. Expert Syst. Appl. 185, 1\u201313 (2021)","journal-title":"Expert Syst. Appl."},{"key":"3213_CR36","doi-asserted-by":"publisher","DOI":"10.1016\/j.displa.2023.102452","volume":"78","author":"M Wan","year":"2023","unstructured":"Wan, M., Huang, Q., Xu, Y., Gu, G., et al.: Global and local multi-feature fusion-based active contour model for infrared image segmentation[J]. Displays 78, 102452 (2023)","journal-title":"Displays"},{"key":"3213_CR37","doi-asserted-by":"publisher","first-page":"462","DOI":"10.3390\/fractalfract6090462","volume":"6","author":"X Liu","year":"2022","unstructured":"Liu, X., Liu, G., Wang, Y., Li, G., Zhang, R., Peng, W.: A variational level set image segmentation method via fractional differentiation[J]. Fractal Fract. 6, 462 (2022)","journal-title":"Fractal Fract."},{"key":"3213_CR38","first-page":"1","volume":"186","author":"S Pritpal","year":"2021","unstructured":"Pritpal, S., Surya, S.B.: A quantum-clustering optimization method for COVID-19 CT scan image segmentation[J]. Expert Syst. Appl. 186, 1\u201321 (2021)","journal-title":"Expert Syst. Appl."},{"key":"3213_CR39","doi-asserted-by":"publisher","first-page":"438","DOI":"10.1016\/j.neucom.2021.01.081","volume":"4532021","author":"X Shu","year":"2021","unstructured":"Shu, X., Yang, Y., Wu, B.: Adaptive segmentation model for liver CT images based on neural network and level set method[J]. Neurocomputing 4532021, 438\u2013452 (2021)","journal-title":"Neurocomputing"},{"key":"3213_CR40","doi-asserted-by":"publisher","first-page":"21925","DOI":"10.1007\/s11042-021-10738-x","volume":"80","author":"S Saman","year":"2021","unstructured":"Saman, S., Narayanan, S.J.: Active contour model driven by optimized energy functionals for MR brain tumor segmentation with intensity inhomogeneity correction[J]. Multim. Tools Appl. 80, 21925\u201321954 (2021)","journal-title":"Multim. Tools Appl."}],"container-title":["The Visual Computer"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00371-023-03213-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00371-023-03213-1\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00371-023-03213-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,6]],"date-time":"2024-11-06T16:11:44Z","timestamp":1730909504000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00371-023-03213-1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12,29]]},"references-count":40,"journal-issue":{"issue":"11","published-print":{"date-parts":[[2024,11]]}},"alternative-id":["3213"],"URL":"https:\/\/doi.org\/10.1007\/s00371-023-03213-1","relation":{},"ISSN":["0178-2789","1432-2315"],"issn-type":[{"type":"print","value":"0178-2789"},{"type":"electronic","value":"1432-2315"}],"subject":[],"published":{"date-parts":[[2023,12,29]]},"assertion":[{"value":"28 November 2023","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"29 December 2023","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}