{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T19:04:21Z","timestamp":1732043061707},"reference-count":50,"publisher":"Springer Science and Business Media LLC","issue":"8","license":[{"start":{"date-parts":[[2023,10,9]],"date-time":"2023-10-09T00:00:00Z","timestamp":1696809600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,10,9]],"date-time":"2023-10-09T00:00:00Z","timestamp":1696809600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61873335","61833011"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Vis Comput"],"published-print":{"date-parts":[[2024,8]]},"DOI":"10.1007\/s00371-023-03109-0","type":"journal-article","created":{"date-parts":[[2023,10,9]],"date-time":"2023-10-09T10:04:45Z","timestamp":1696845885000},"page":"5357-5374","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["ZRDNet: zero-reference image defogging by physics-based decomposition\u2013reconstruction mechanism and perception fusion"],"prefix":"10.1007","volume":"40","author":[{"given":"Zi-Xin","family":"Li","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6508-0051","authenticated-orcid":false,"given":"Yu-Long","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Qing-Long","family":"Han","sequence":"additional","affiliation":[]},{"given":"Chen","family":"Peng","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,9]]},"reference":[{"key":"3109_CR1","doi-asserted-by":"publisher","first-page":"1121","DOI":"10.1007\/s00371-021-02071-z","volume":"38","author":"S Kuanar","year":"2022","unstructured":"Kuanar, S., Mahapatra, D., Bilas, M., et al.: Multi-path dilated convolution network for haze and glow removal in nighttime images. Vis. Comput. 38, 1121\u20131134 (2022)","journal-title":"Vis. Comput."},{"issue":"6","key":"3109_CR2","doi-asserted-by":"publisher","first-page":"713","DOI":"10.1109\/TPAMI.2003.1201821","volume":"25","author":"SG Narasimhan","year":"2003","unstructured":"Narasimhan, S.G., Nayar, S.K.: Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 713\u2013724 (2003)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"12","key":"3109_CR3","doi-asserted-by":"publisher","first-page":"2341","DOI":"10.1109\/TPAMI.2010.168","volume":"33","author":"K He","year":"2011","unstructured":"He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341\u20132353 (2011)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"2","key":"3109_CR4","doi-asserted-by":"publisher","first-page":"999","DOI":"10.1109\/TIP.2017.2771158","volume":"27","author":"TM Bui","year":"2018","unstructured":"Bui, T.M., Kim, W.: Single image dehazing using color ellipsoid prior. IEEE Trans. Image Process. 27(2), 999\u20131009 (2018)","journal-title":"IEEE Trans. Image Process."},{"issue":"6","key":"3109_CR5","doi-asserted-by":"publisher","first-page":"3490","DOI":"10.1109\/TCSVT.2021.3114601","volume":"32","author":"X Zhang","year":"2022","unstructured":"Zhang, X., Wang, T., Tang, G., et al.: Single image haze removal based on a simple additive model with haze smoothness prior. IEEE Trans. Circuits Syst. Video Technol. 32(6), 3490\u20133499 (2022)","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"issue":"11","key":"3109_CR6","doi-asserted-by":"publisher","first-page":"3522","DOI":"10.1109\/TIP.2015.2446191","volume":"24","author":"Q Zhu","year":"2015","unstructured":"Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24(11), 3522\u20133533 (2015)","journal-title":"IEEE Trans. Image Process."},{"issue":"3","key":"3109_CR7","doi-asserted-by":"publisher","first-page":"953","DOI":"10.1007\/s00371-021-02377-y","volume":"39","author":"S Zhang","year":"2023","unstructured":"Zhang, S., Zhang, J., He, F., et al.: DRDDN: dense residual and dilated dehazing network. Vis. Comput. 39(3), 953\u2013969 (2023)","journal-title":"Vis. Comput."},{"key":"3109_CR8","doi-asserted-by":"publisher","DOI":"10.1007\/s00371-023-02917-8","author":"W Yi","year":"2023","unstructured":"Yi, W., Dong, L., Liu, M., et al.: MFAF-Net: image dehazing with multi-level features and adaptive fusion. Vis. Comput. (2023). https:\/\/doi.org\/10.1007\/s00371-023-02917-8","journal-title":"Vis. Comput."},{"key":"3109_CR9","doi-asserted-by":"publisher","first-page":"1927","DOI":"10.1109\/TIP.2023.3256763","volume":"32","author":"Y Song","year":"2023","unstructured":"Song, Y., He, Z., Qian, H., et al.: Vision transformers for single image dehazing. IEEE Trans. Image Process. 32, 1927\u20131941 (2023)","journal-title":"IEEE Trans. Image Process."},{"key":"3109_CR10","doi-asserted-by":"crossref","unstructured":"Yang, D., Sun, J.: Proximal dehaze-net: a prior learning-based deep network for single image dehazing. In: European Conference on Computer Vision, Munich, Germany, pp. 702\u2013717 (2018)","DOI":"10.1007\/978-3-030-01234-2_43"},{"key":"3109_CR11","doi-asserted-by":"crossref","unstructured":"Qin, X., Wang, Z., Bai, Y., et al: FFA-Net: feature fusion attention network for single image dehazing. In: AAAI Conference on Artificial Intelligence, New York, USA, pp. 11908\u201311915 (2020)","DOI":"10.1609\/aaai.v34i07.6865"},{"key":"3109_CR12","doi-asserted-by":"crossref","unstructured":"Chen, Z., Wang, Y., Yang, Y., et al.: PSD: principled synthetic-to-real dehazing guided by physical priors. In: IEEE Conference on Computer Vision and Pattern Recognition, Nashville, USA, pp. 7176\u20137185 (2021)","DOI":"10.1109\/CVPR46437.2021.00710"},{"issue":"5","key":"3109_CR13","doi-asserted-by":"publisher","first-page":"1579","DOI":"10.1007\/s00371-021-02089-3","volume":"38","author":"F Yang","year":"2022","unstructured":"Yang, F., Zhang, Q.: Depth aware image dehazing. Vis. Comput. 38(5), 1579\u20131587 (2022)","journal-title":"Vis. Comput."},{"issue":"2","key":"3109_CR14","doi-asserted-by":"publisher","first-page":"663","DOI":"10.1007\/s00371-021-02365-2","volume":"39","author":"X Li","year":"2023","unstructured":"Li, X., Hua, Z., Li, J.: Attention-based adaptive feature selection for multi-stage image dehazing. Vis. Comput. 39(2), 663\u2013678 (2023)","journal-title":"Vis. Comput."},{"key":"3109_CR15","doi-asserted-by":"crossref","unstructured":"Engin, D., Genc, A., Ekenel, H.K.: Cycle-Dehaze: enhanced CycleGAN for single image dehazing. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, USA, pp.\u00a0938\u20139388 (2018)","DOI":"10.1109\/CVPRW.2018.00127"},{"key":"3109_CR16","doi-asserted-by":"crossref","unstructured":"Yang, X., Xu, Z., Luo, J.: Towards perceptual image dehazing by physics-based disentanglement and adversarial training. In: AAAI Conference on Artificial Intelligence, New Orleans, USA, pp.\u00a07485\u20137492 (2018)","DOI":"10.1609\/aaai.v32i1.12317"},{"key":"3109_CR17","doi-asserted-by":"publisher","DOI":"10.1007\/s00371-023-02987-8","author":"S Wang","year":"2023","unstructured":"Wang, S., Mei, X., Kang, P., et al.: DFC-dehaze: an improved cycle-consistent generative adversarial network for unpaired image dehazing. Vis. Comput. (2023). https:\/\/doi.org\/10.1007\/s00371-023-02987-8","journal-title":"Vis. Comput."},{"key":"3109_CR18","doi-asserted-by":"publisher","first-page":"2766","DOI":"10.1109\/TIP.2019.2952690","volume":"29","author":"L Li","year":"2020","unstructured":"Li, L., Dong, Y.L., Ren, W.Q., et al.: Semi-supervised image dehazing. IEEE Trans. Image Process. 29, 2766\u20132779 (2020)","journal-title":"IEEE Trans. Image Process."},{"key":"3109_CR19","doi-asserted-by":"publisher","first-page":"3391","DOI":"10.1109\/TIP.2021.3060873","volume":"30","author":"S Zhao","year":"2021","unstructured":"Zhao, S., Zhang, L., Shen, Y., et al.: RefineDNet: a weakly supervised refinement framework for single image dehazing. IEEE Trans. Image Process. 30, 3391\u20133404 (2021)","journal-title":"IEEE Trans. Image Process."},{"key":"3109_CR20","doi-asserted-by":"crossref","unstructured":"Yang, Y., Wang, C., Liu, R., et al.: Self-augmented unpaired image dehazing via density and depth decomposition. In: IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, USA, pp.\u00a02037\u20132046 (2022)","DOI":"10.1109\/CVPR52688.2022.00208"},{"key":"3109_CR21","unstructured":"Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, Montreal, Canada, pp.\u00a02672\u20132680 (2014)"},{"issue":"10","key":"3109_CR22","doi-asserted-by":"publisher","first-page":"19440","DOI":"10.1109\/TITS.2022.3165176","volume":"23","author":"Q Jiang","year":"2022","unstructured":"Jiang, Q., Mao, Y., Cong, R., et al.: Unsupervised decomposition and correction network for low-light image enhancement. IEEE Trans. Intell. Transp. Syst. 23(10), 19440\u201319455 (2022)","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"3109_CR23","doi-asserted-by":"crossref","unstructured":"Guo, C., Li, C., Guo, J., et al.: Zero-reference deep curve estimation for low-light image enhancement. In: IEEE Conference on Computer Vision and Pattern Recognition, Seattle, USA, pp.\u00a01780\u20131789 (2020)","DOI":"10.1109\/CVPR42600.2020.00185"},{"key":"3109_CR24","doi-asserted-by":"crossref","unstructured":"Gandelsman, Y., Shocher, A., Irani, M.: Double-DIP: unsupervised image decomposition via coupled deep-image-priors. In: IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, USA, pp.\u00a011026\u201311035 (2019)","DOI":"10.1109\/CVPR.2019.01128"},{"key":"3109_CR25","doi-asserted-by":"publisher","first-page":"2692","DOI":"10.1109\/TIP.2019.2952032","volume":"29","author":"A Golts","year":"2020","unstructured":"Golts, A., Freedman, D., Elad, M.: Unsupervised single image dehazing using dark channel prior loss. IEEE Trans. Image Process. 29, 2692\u20132701 (2020)","journal-title":"IEEE Trans. Image Process."},{"key":"3109_CR26","doi-asserted-by":"publisher","first-page":"8457","DOI":"10.1109\/TIP.2020.3016134","volume":"29","author":"B Li","year":"2020","unstructured":"Li, B., Gou, Y., Liu, J.Z., et al.: Zero-shot image dehazing. IEEE Trans. Image Process. 29, 8457\u20138466 (2020)","journal-title":"IEEE Trans. Image Process."},{"issue":"5","key":"3109_CR27","doi-asserted-by":"publisher","first-page":"1754","DOI":"10.1007\/s11263-021-01431-5","volume":"129","author":"B Li","year":"2021","unstructured":"Li, B., Gou, Y., Gu, S., et al.: You only look yourself: unsupervised and untrained single image dehazing neural network. Int. J. Comput. Vis. 129(5), 1754\u20131767 (2021)","journal-title":"Int. J. Comput. Vis."},{"issue":"9","key":"3109_CR28","doi-asserted-by":"publisher","first-page":"5736","DOI":"10.1109\/TCSVT.2022.3153685","volume":"32","author":"W Xu","year":"2022","unstructured":"Xu, W., Chen, X., Guo, H., et al.: Unsupervised image restoration with quality-task-perception loss. IEEE Trans. Circuits Syst. Video Technol. 32(9), 5736\u20135747 (2022)","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"3109_CR29","doi-asserted-by":"publisher","DOI":"10.1109\/TMM.2022.3163554","author":"J Li","year":"2022","unstructured":"Li, J., Li, Y., Zhuo, L., et al.: USID-Net: unsupervised single image dehazing network via disentangled representations. IEEE Trans. Multimed. (2022). https:\/\/doi.org\/10.1109\/TMM.2022.3163554","journal-title":"IEEE Trans. Multimed."},{"issue":"3","key":"3109_CR30","doi-asserted-by":"publisher","first-page":"704","DOI":"10.1109\/TMM.2019.2933334","volume":"22","author":"C Li","year":"2020","unstructured":"Li, C., Guo, C., Guo, J., et al.: PDR-Net: perception-inspired single image dehazing network with refinement. IEEE Trans. Multimed. 22(3), 704\u2013716 (2020)","journal-title":"IEEE Trans. Multimed."},{"key":"3109_CR31","doi-asserted-by":"crossref","unstructured":"Li, R., Pan, J., Li, Z., et al.: Single image dehazing via conditional generative adversarial network. In: IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, pp.\u00a08202\u20138211 (2018)","DOI":"10.1109\/CVPR.2018.00856"},{"key":"3109_CR32","doi-asserted-by":"crossref","unstructured":"Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, pp.\u00a03194\u20133203 (2018)","DOI":"10.1109\/CVPR.2018.00337"},{"key":"3109_CR33","doi-asserted-by":"crossref","unstructured":"Woo, S., Park, J., Lee, J.Y., et al.: CBAM: convolutional block attention module. In: European Conference on Computer Vision, Munich, Germany, pp.\u00a03\u201319 (2018)","DOI":"10.1007\/978-3-030-01234-2_1"},{"key":"3109_CR34","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2020.107255","volume":"102","author":"S Yin","year":"2020","unstructured":"Yin, S., Wang, Y., Yang, Y.H.: A novel image-dehazing network with a parallel attention block. Pattern Recogn. 102, 107255 (2020)","journal-title":"Pattern Recogn."},{"key":"3109_CR35","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp.\u00a0770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"3109_CR36","doi-asserted-by":"crossref","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, pp. 234\u2013241 (2015)","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"3109_CR37","doi-asserted-by":"crossref","unstructured":"Zhao, H., Kong, X., He, J., et al.: Efficient image super-resolution using pixel attention. In: European Conference on Computer Vision, Glasgow, UK, pp.\u00a056\u201372 (2020)","DOI":"10.1007\/978-3-030-67070-2_3"},{"key":"3109_CR38","doi-asserted-by":"crossref","unstructured":"Li, X., Wang, W., Hu, X., et al.: Selective kernel networks. In: IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, USA, pp.\u00a0510\u2013519 (2019)","DOI":"10.1109\/CVPR.2019.00060"},{"key":"3109_CR39","doi-asserted-by":"crossref","unstructured":"Johnson, J., Alahi, A., Li, F.: Perceptual losses for real-time style transfer and super-resolution. In: European Conference on Computer Vision, Amsterdam, Netherlands, pp.\u00a0694\u2013711 (2016)","DOI":"10.1007\/978-3-319-46475-6_43"},{"key":"3109_CR40","doi-asserted-by":"publisher","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Preprint arXiv:1409.1556v6 (2015). https:\/\/doi.org\/10.48550\/arXiv.1409.1556","DOI":"10.48550\/arXiv.1409.1556"},{"issue":"3","key":"3109_CR41","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","volume":"115","author":"O Russakovsky","year":"2015","unstructured":"Russakovsky, O., Deng, J., Su, H., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211\u2013252 (2015)","journal-title":"Int. J. Comput. Vis."},{"key":"3109_CR42","doi-asserted-by":"publisher","DOI":"10.1007\/s11042-022-14103-4","author":"Z Li","year":"2022","unstructured":"Li, Z., Wang, Y., Peng, C., et al.: Laplace dark channel attenuation-based single image defogging in ocean scenes. Multimed. Tools Appl. (2022). https:\/\/doi.org\/10.1007\/s11042-022-14103-4","journal-title":"Multimed. Tools Appl."},{"issue":"1","key":"3109_CR43","doi-asserted-by":"publisher","first-page":"492","DOI":"10.1109\/TIP.2018.2867951","volume":"28","author":"B Li","year":"2019","unstructured":"Li, B., Ren, W., Fu, D., et al.: Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process. 28(1), 492\u2013505 (2019)","journal-title":"IEEE Trans. Image Process."},{"key":"3109_CR44","doi-asserted-by":"publisher","first-page":"6947","DOI":"10.1109\/TIP.2020.2995264","volume":"29","author":"S Zhao","year":"2020","unstructured":"Zhao, S., Zhang, L., Huang, S., et al.: Dehazing evaluation: real-world benchmark datasets, criteria, and baselines. IEEE Trans. Image Process. 29, 6947\u20136962 (2020)","journal-title":"IEEE Trans. Image Process."},{"issue":"13","key":"3109_CR45","doi-asserted-by":"publisher","first-page":"800","DOI":"10.1049\/el:20080522","volume":"44","author":"Q Huynh-Thu","year":"2008","unstructured":"Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image\/video quality assessment. Electron. Lett. 44(13), 800\u2013801 (2008)","journal-title":"Electron. Lett."},{"issue":"4","key":"3109_CR46","doi-asserted-by":"publisher","first-page":"600","DOI":"10.1109\/TIP.2003.819861","volume":"13","author":"Z Wang","year":"2004","unstructured":"Wang, Z., Bovik, A.C., Sheikh, H.R., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600\u2013612 (2004)","journal-title":"IEEE Trans. Image Process."},{"key":"3109_CR47","doi-asserted-by":"crossref","unstructured":"Su, S., Yan, Q., Zhu, Y., et al.: Blindly assess image quality in the wild guided by a self-adaptive hyper network. In: IEEE Conference on Computer Vision and Pattern Recognition, Seattle, USA, pp.\u00a03667\u20133676 (2020)","DOI":"10.1109\/CVPR42600.2020.00372"},{"key":"3109_CR48","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference for Learning Representations, San Diego, USA, pp.\u00a01\u20138 (2015)"},{"key":"3109_CR49","doi-asserted-by":"crossref","unstructured":"Ledig, C., Theis, L., Husz\u00e1r, F., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, pp.\u00a04681-4690 (2017)","DOI":"10.1109\/CVPR.2017.19"},{"key":"3109_CR50","doi-asserted-by":"crossref","unstructured":"Blau, Y., Mechrez, R., Timofte, R., et al.: The 2018 PIRM challenge on perceptual image super-resolution. In: European Conference on Computer Vision Workshops, Munich, Germany, pp.\u00a0334\u2013355 (2018)","DOI":"10.1007\/978-3-030-11021-5_21"}],"container-title":["The Visual Computer"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00371-023-03109-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00371-023-03109-0\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00371-023-03109-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,24]],"date-time":"2024-07-24T13:28:54Z","timestamp":1721827734000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00371-023-03109-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,10,9]]},"references-count":50,"journal-issue":{"issue":"8","published-print":{"date-parts":[[2024,8]]}},"alternative-id":["3109"],"URL":"https:\/\/doi.org\/10.1007\/s00371-023-03109-0","relation":{},"ISSN":["0178-2789","1432-2315"],"issn-type":[{"value":"0178-2789","type":"print"},{"value":"1432-2315","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,10,9]]},"assertion":[{"value":"9 September 2023","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"9 October 2023","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors whose names are listed declare no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}