{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,26]],"date-time":"2024-10-26T17:10:02Z","timestamp":1729962602216,"version":"3.28.0"},"reference-count":44,"publisher":"Springer Science and Business Media LLC","issue":"5","license":[{"start":{"date-parts":[[2023,8,23]],"date-time":"2023-08-23T00:00:00Z","timestamp":1692748800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,8,23]],"date-time":"2023-08-23T00:00:00Z","timestamp":1692748800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62002200","62202268","62272281"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100007129","name":"Shandong Provincial Natural Science Foundation","doi-asserted-by":"crossref","award":["ZR2021QF134","ZR2020QF012"],"id":[{"id":"10.13039\/501100007129","id-type":"DOI","asserted-by":"crossref"}]},{"name":"Shandong Provincial Science and Technology Support Program of Youth Innovation Team in Colleges","award":["2021KJ069"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Vis Comput"],"published-print":{"date-parts":[[2024,5]]},"DOI":"10.1007\/s00371-023-03044-0","type":"journal-article","created":{"date-parts":[[2023,8,23]],"date-time":"2023-08-23T09:28:19Z","timestamp":1692782899000},"page":"3441-3456","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["Deep recurrent residual channel attention network for single image super-resolution"],"prefix":"10.1007","volume":"40","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-6340-7818","authenticated-orcid":false,"given":"Yepeng","family":"Liu","sequence":"first","affiliation":[]},{"given":"Dezhi","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Fan","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Qingsong","family":"Xie","sequence":"additional","affiliation":[]},{"given":"Caiming","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,8,23]]},"reference":[{"doi-asserted-by":"crossref","unstructured":"Bevilacqua, M., Roumy, A., Guillemot. C., et\u00a0al.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding (2012)","key":"3044_CR1","DOI":"10.5244\/C.26.135"},{"unstructured":"Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004. IEEE, pp I\u2013I (2004)","key":"3044_CR2"},{"issue":"11","key":"3044_CR3","doi-asserted-by":"publisher","first-page":"3643","DOI":"10.1007\/s00371-021-02193-4","volume":"38","author":"V Chudasama","year":"2022","unstructured":"Chudasama, V., Upla, K., Raja, K., et al.: Compact and progressive network for enhanced single image super-resolution-compresrnet. Vis. Comput. 38(11), 3643\u20133665 (2022)","journal-title":"Vis. Comput."},{"doi-asserted-by":"crossref","unstructured":"Dong, C., Loy, C.C., He, K., et\u00a0al.: Learning a deep convolutional network for image super-resolution. In: European Conference on Computer Vision, pp. 184\u2013199. Springer (2014)","key":"3044_CR4","DOI":"10.1007\/978-3-319-10593-2_13"},{"doi-asserted-by":"crossref","unstructured":"Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: European Conference on Computer Vision, pp. 391\u2013407. Springer (2016)","key":"3044_CR5","DOI":"10.1007\/978-3-319-46475-6_25"},{"unstructured":"Dosovitskiy, A., Beyer, L., Kolesnikov. A., et\u00a0al.: An image is worth 16x16 words: transformers for image recognition at scale. (2020) arXiv:2010.11929","key":"3044_CR6"},{"doi-asserted-by":"crossref","unstructured":"Du, Q., Gu, W., Zhang, L., et\u00a0al.: Attention-based LSTM-CNNS for time-series classification. In: Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems, pp. 410\u2013411 (2018)","key":"3044_CR7","DOI":"10.1145\/3274783.3275208"},{"issue":"3","key":"3044_CR8","doi-asserted-by":"publisher","first-page":"1137","DOI":"10.1007\/s00371-021-02393-y","volume":"39","author":"Y Gao","year":"2023","unstructured":"Gao, Y., Qi, Z., Zhao, D.: Edge-enhanced instance segmentation by grid regions of interest. Vis. Comput. 39(3), 1137\u20131148 (2023)","journal-title":"Vis. Comput."},{"doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., et\u00a0al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","key":"3044_CR9","DOI":"10.1109\/CVPR.2016.90"},{"doi-asserted-by":"crossref","unstructured":"Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5197\u20135206 (2015)","key":"3044_CR10","DOI":"10.1109\/CVPR.2015.7299156"},{"unstructured":"Huang, Y., Wang, W., Wang, L.: Bidirectional recurrent convolutional networks for multi-frame super-resolution. In: Advances in Neural Information Processing Systems, vol. 28 (2015)","key":"3044_CR11"},{"issue":"128","key":"3044_CR12","first-page":"388","volume":"613","author":"Y Jing","year":"2022","unstructured":"Jing, Y., Lin, L., Li, X., et al.: An attention mechanism based convolutional network for satellite precipitation downscaling over China. J. Hydrol. 613(128), 388 (2022)","journal-title":"J. Hydrol."},{"doi-asserted-by":"crossref","unstructured":"Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646\u20131654 (2016)","key":"3044_CR13","DOI":"10.1109\/CVPR.2016.182"},{"doi-asserted-by":"crossref","unstructured":"Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1637\u20131645 (2016)","key":"3044_CR14","DOI":"10.1109\/CVPR.2016.181"},{"doi-asserted-by":"crossref","unstructured":"Kirkland, E. J.: Bilinear interpolation. In: Advanced Computing in Electron Microscopy, pp. 261\u2013263. Springer, Berlin (2010)","key":"3044_CR15","DOI":"10.1007\/978-1-4419-6533-2_12"},{"doi-asserted-by":"crossref","unstructured":"Ledig, C., Theis, L., Husz\u00e1r, F., et\u00a0al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681\u20134690 (2017)","key":"3044_CR16","DOI":"10.1109\/CVPR.2017.19"},{"doi-asserted-by":"crossref","unstructured":"Li, Z., Yang, J., Liu, Z., et\u00a0al.: Feedback network for image super-resolution. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 3867\u20133876 (2019)","key":"3044_CR17","DOI":"10.1109\/CVPR.2019.00399"},{"unstructured":"Liang, J., Zhou, T., Liu, D., et\u00a0al.: Clustseg: Clustering for Universal Segmentation. (2023) arXiv:2305.02187","key":"3044_CR18"},{"key":"3044_CR19","doi-asserted-by":"publisher","first-page":"139138","DOI":"10.1109\/ACCESS.2021.3100069","volume":"9","author":"B Liu","year":"2021","unstructured":"Liu, B., Chen, J.: A super resolution algorithm based on attention mechanism and SRGAN network. IEEE Access 9, 139138\u2013139145 (2021)","journal-title":"IEEE Access"},{"doi-asserted-by":"crossref","unstructured":"Liu, D., Cui, Y., Tan, W., et\u00a0al.: SG-Net: spatial granularity network for one-stage video instance segmentation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 9816\u20139825 (2021)","key":"3044_CR20","DOI":"10.1109\/CVPR46437.2021.00969"},{"doi-asserted-by":"crossref","unstructured":"Liu, D., Liang, J., Geng, T., et\u00a0al.: Tripartite feature enhanced pyramid network for dense prediction. IEEE Trans. Image Process. (2023)","key":"3044_CR21","DOI":"10.1109\/TIP.2023.3272826"},{"unstructured":"Liu, T., Cai, Y., Zheng, J., et\u00a0al.: Beacon: a boundary embedded attentional convolution network for point cloud instance segmentation. Vis. Comput. pp. 1\u201311 (2022)","key":"3044_CR22"},{"doi-asserted-by":"crossref","unstructured":"Ma, C., Rao, Y., Cheng, Y., et\u00a0al.: Structure-preserving super resolution with gradient guidance. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 7769\u20137778 (2020)","key":"3044_CR23","DOI":"10.1109\/CVPR42600.2020.00779"},{"doi-asserted-by":"crossref","unstructured":"Martin, D., Fowlkes, C., Tal, D., et\u00a0al.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001. IEEE, pp. 416\u2013423 (2001)","key":"3044_CR24","DOI":"10.1109\/ICCV.2001.937655"},{"doi-asserted-by":"crossref","unstructured":"Mei, Y., Fan, Y., Zhou, Y.: Image super-resolution with non-local sparse attention. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 3517\u20133526 (2021)","key":"3044_CR25","DOI":"10.1109\/CVPR46437.2021.00352"},{"unstructured":"Mnih, V., Heess, N., Graves. A., et\u00a0al.: Recurrent models of visual attention. In: Advances in Neural Information Processing Systems, vol. 27 (2014)","key":"3044_CR26"},{"unstructured":"Paszke, A., Gross, S., Chintala, S., et\u00a0al.: Automatic differentiation in pytorch (2017)","key":"3044_CR27"},{"unstructured":"Raiko, T., Valpola, H., LeCun, Y.: Deep learning made easier by linear transformations in perceptrons. In: Artificial Intelligence and Statistics, PMLR, pp. 924\u2013932 (2012)","key":"3044_CR28"},{"unstructured":"Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)","key":"3044_CR29"},{"unstructured":"Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3147\u20133155","key":"3044_CR30"},{"doi-asserted-by":"crossref","unstructured":"Tai, Y., Yang, J., Liu, X., et\u00a0al.: Memnet: a persistent memory network for image restoration. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4539\u20134547 (2017)","key":"3044_CR31","DOI":"10.1109\/ICCV.2017.486"},{"key":"3044_CR32","doi-asserted-by":"publisher","first-page":"1489","DOI":"10.1109\/TMM.2020.2999182","volume":"23","author":"C Tian","year":"2020","unstructured":"Tian, C., Xu, Y., Zuo, W., et al.: Coarse-to-fine CNN for image super-resolution. IEEE Trans. Multim. 23, 1489\u20131502 (2020)","journal-title":"IEEE Trans. Multim."},{"doi-asserted-by":"crossref","unstructured":"Wang, F., Jiang, M., Qian, C., et\u00a0al.: Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156\u20133164 (2017)","key":"3044_CR33","DOI":"10.1109\/CVPR.2017.683"},{"unstructured":"Wang, W., Han, C., Zhou, T., et\u00a0al.: Visual recognition with deep nearest centroids (2022). arXiv:2209.07383","key":"3044_CR34"},{"unstructured":"Wang, W., Liang, J., Liu, D.: Learning equivariant segmentation with instance-unique querying (2022). arXiv:2210.00911","key":"3044_CR35"},{"doi-asserted-by":"crossref","unstructured":"Wang, Z., Yang, Y., Wang, Z., et\u00a0al.: Self-tuned deep super resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1\u20138 (2015)","key":"3044_CR36","DOI":"10.1109\/CVPRW.2015.7301266"},{"issue":"11","key":"3044_CR37","doi-asserted-by":"publisher","first-page":"2861","DOI":"10.1109\/TIP.2010.2050625","volume":"19","author":"J Yang","year":"2010","unstructured":"Yang, J., Wright, J., Huang, T.S., et al.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861\u20132873 (2010)","journal-title":"IEEE Trans. Image Process."},{"issue":"12","key":"3044_CR38","doi-asserted-by":"publisher","first-page":"5895","DOI":"10.1109\/TIP.2017.2750403","volume":"26","author":"W Yang","year":"2017","unstructured":"Yang, W., Feng, J., Yang, J., et al.: Deep edge guided recurrent residual learning for image super-resolution. IEEE Trans. Image Process. 26(12), 5895\u20135907 (2017)","journal-title":"IEEE Trans. Image Process."},{"doi-asserted-by":"crossref","unstructured":"Yang, X., Zhu, Y., Guo, Y., et\u00a0al.: An image super-resolution network based on multi-scale convolution fusion. Vis. Comput. pp. 1\u201311 (2021)","key":"3044_CR39","DOI":"10.1007\/s00371-021-02297-x"},{"doi-asserted-by":"crossref","unstructured":"Yu, J., Xiao, C., Su, K.: A method of gibbs artifact reduction for pocs super-resolution image reconstruction. In: 2006 8th International Conference on Signal Processing. IEEE (2006)","key":"3044_CR40","DOI":"10.1109\/ICOSP.2006.345717"},{"doi-asserted-by":"crossref","unstructured":"Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: International Conference on Curves and Surfaces, pp. 711\u2013730. Springer, Berlin (2010)","key":"3044_CR41","DOI":"10.1007\/978-3-642-27413-8_47"},{"issue":"10","key":"3044_CR42","doi-asserted-by":"publisher","first-page":"7149","DOI":"10.1109\/TPAMI.2021.3096327","volume":"44","author":"W Zhang","year":"2021","unstructured":"Zhang, W., Liu, Y., Dong, C., et al.: RankSRGAN: super resolution generative adversarial networks with learning to rank. IEEE Trans. Pattern Anal. Mach. Intell. 44(10), 7149\u20137166 (2021)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"doi-asserted-by":"crossref","unstructured":"Zhang, Y., Li, K., Li, K., et\u00a0al.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 286\u2013301 (2018)","key":"3044_CR43","DOI":"10.1007\/978-3-030-01234-2_18"},{"unstructured":"Zhou, D., Liu, Y., Li, X., et\u00a0al.: Single-image super-resolution based on local biquadratic spline with edge constraints and adaptive optimization in transform domain. Vis. Comput. pp. 1\u201316 (2022)","key":"3044_CR44"}],"container-title":["The Visual Computer"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00371-023-03044-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00371-023-03044-0\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00371-023-03044-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,26]],"date-time":"2024-10-26T16:49:45Z","timestamp":1729961385000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00371-023-03044-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8,23]]},"references-count":44,"journal-issue":{"issue":"5","published-print":{"date-parts":[[2024,5]]}},"alternative-id":["3044"],"URL":"https:\/\/doi.org\/10.1007\/s00371-023-03044-0","relation":{},"ISSN":["0178-2789","1432-2315"],"issn-type":[{"type":"print","value":"0178-2789"},{"type":"electronic","value":"1432-2315"}],"subject":[],"published":{"date-parts":[[2023,8,23]]},"assertion":[{"value":"22 July 2023","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"23 August 2023","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}