{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T03:04:33Z","timestamp":1740107073959,"version":"3.37.3"},"reference-count":126,"publisher":"Springer Science and Business Media LLC","issue":"12","license":[{"start":{"date-parts":[[2022,12,23]],"date-time":"2022-12-23T00:00:00Z","timestamp":1671753600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2022,12,23]],"date-time":"2022-12-23T00:00:00Z","timestamp":1671753600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/100009044","name":"Technische Universit\u00e4t Kaiserslautern","doi-asserted-by":"crossref","id":[{"id":"10.13039\/100009044","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Vis Comput"],"published-print":{"date-parts":[[2023,12]]},"abstract":"Abstract<\/jats:title>In many applications, visual analytics (VA) has developed into a standard tool to ease data access and knowledge generation. VA describes a holistic cycle transforming data into hypothesis and visualization to generate insights that enhance the data. Unfortunately, many data sources used in the VA process are affected by uncertainty. In addition, the VA cycle itself can introduce uncertainty to the knowledge generation process but does not provide a mechanism to handle these sources of uncertainty. In this manuscript, we aim to provide an extended VA cycle that is capable of handling uncertainty by quantification, propagation, and visualization, defined as uncertainty-aware visual analytics (UAVA). Here, a recap of uncertainty definition and description is used as a starting point to insert novel components in the visual analytics cycle. These components assist in capturing uncertainty throughout the VA cycle. Further, different data types, hypothesis generation approaches, and uncertainty-aware visualization approaches are discussed that fit in the defined UAVA cycle. In addition, application scenarios that can be handled by such a cycle, examples, and a list of open challenges in the area of UAVA are provided.<\/jats:p>","DOI":"10.1007\/s00371-022-02733-6","type":"journal-article","created":{"date-parts":[[2022,12,23]],"date-time":"2022-12-23T08:02:36Z","timestamp":1671782556000},"page":"6345-6366","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["Uncertainty-aware visual analytics: scope, opportunities, and challenges"],"prefix":"10.1007","volume":"39","author":[{"given":"Robin G. C.","family":"Maack","sequence":"first","affiliation":[]},{"given":"Gerik","family":"Scheuermann","sequence":"additional","affiliation":[]},{"given":"Hans","family":"Hagen","sequence":"additional","affiliation":[]},{"given":"Jose Tiberio Hern\u00e1ndez","family":"Pe\u00f1aloza","sequence":"additional","affiliation":[]},{"given":"Christina","family":"Gillmann","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,12,23]]},"reference":[{"key":"2733_CR1","doi-asserted-by":"crossref","DOI":"10.1201\/b15410","volume-title":"Data Clustering: Algorithms and Applications","author":"CC Aggarwal","year":"2013","unstructured":"Aggarwal, C.C., Reddy, C.K.: Data Clustering: Algorithms and Applications, 1st edn. Chapman & Hall, Boca Raton (2013)","edition":"1st"},{"key":"2733_CR2","doi-asserted-by":"crossref","unstructured":"Andrienko, N., Lammarsch, T., Andrienko, G., Fuchs, G., Keim, D., Miksch, S., Rind, A.: Viewing visual analytics as model building. In: Computer Graphics Forum (2018)","DOI":"10.1111\/cgf.13324"},{"key":"2733_CR3","doi-asserted-by":"crossref","unstructured":"Angelini, M., Santucci, G.: Visual cyber situational awareness for critical infrastructures. In: Proceedings of the 8th International Symposium on Visual Information Communication and Interaction (New York, NY, USA), VINCI \u201915, pp. 83\u201392. ACM (2015)","DOI":"10.1145\/2801040.2801052"},{"key":"2733_CR4","first-page":"195","volume-title":"Sensitivity Analysis for Uncertainty Quantification in Mathematical Models, Mathematical and Statistical Estimation Approaches in Epidemiology","author":"L Arriola","year":"2009","unstructured":"Arriola, L., Hyman, J.M.: Sensitivity Analysis for Uncertainty Quantification in Mathematical Models, Mathematical and Statistical Estimation Approaches in Epidemiology, pp. 195\u2013247. Springer, Cham (2009)"},{"key":"2733_CR5","doi-asserted-by":"crossref","unstructured":"Bassil, S., Keller, R.K: Software visualization tools: survey and analysis. In: Proceedings 9th International Workshop on Program Comprehension. IWPC 2001, pp. 7\u201317. IEEE (2001)","DOI":"10.1109\/WPC.2001.921708"},{"key":"2733_CR6","unstructured":"Beck, F., Burch, M., Diehl, S., Weiskopf, D.: The state of the art in visualizing dynamic graphs. In: EuroVis (STARs) (2014)"},{"issue":"4","key":"2733_CR7","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/0263-2241(87)90036-4","volume":"5","author":"G Belforte","year":"1987","unstructured":"Belforte, G., Bona, B., Cerone, V.: Bounded measurement error estimates: their properties and their use for small sets of data. Measurement 5(4), 167\u2013175 (1987)","journal-title":"Measurement"},{"key":"2733_CR8","doi-asserted-by":"crossref","unstructured":"Bhatt, U., Antor\u00e1n, J., Zhang, Y., Liao, Q.V., Sattigeri, P., Fogliato, R., Melan\u00e7on, G., Krishnan, R., Stanley, J., Tickoo, O. et al.: Uncertainty as a form of transparency: measuring, communicating, and using uncertainty. In: Proceedings of the 2021 AAAI\/ACM Conference on AI, Ethics, and Society, pp. 401\u2013413 (2021)","DOI":"10.1145\/3461702.3462571"},{"key":"2733_CR9","doi-asserted-by":"crossref","unstructured":"Bonneau, G.-P., Hege, H.-C., Johnson, C.R., Oliveira, M.M., Potter, K., Rheingans, P., Schultz, T.: Overview and state-of-the-art of uncertainty visualization. In: Scientific Visualization, pp. 3\u201327. Springer (2014)","DOI":"10.1007\/978-1-4471-6497-5_1"},{"key":"2733_CR10","unstructured":"Bors, C., Bernard, J., B\u00f6gl, M., Gschwandtner, T., Kohlhammer, J., Miksch, S.: Quantifying uncertainty in multivariate time series pre-processing. In: von Landesberger, T., Turkay, C. (Eds.) EuroVis Workshop on Visual Analytics (EuroVA). The Eurographics Association (2019)"},{"key":"2733_CR11","doi-asserted-by":"crossref","DOI":"10.4324\/9781315654577","volume-title":"Error and Uncertainty in Scientific Practice","author":"M Boumans","year":"2015","unstructured":"Boumans, M., Hon, G., Petersen, A.C.: Error and Uncertainty in Scientific Practice. Routledge, New York (2015)"},{"key":"2733_CR12","doi-asserted-by":"crossref","unstructured":"Boyat, A.K., Joshi, B.K.: A review paper: noise models in digital image processing. arXiv (2015)","DOI":"10.5121\/sipij.2015.6206"},{"key":"2733_CR13","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1007\/978-3-642-00437-7_2","volume-title":"Interactive Visualization-A Survey, Human Machine Interaction","author":"D Brodbeck","year":"2009","unstructured":"Brodbeck, D., Mazza, R., Lalanne, D.: Interactive Visualization-A Survey, Human Machine Interaction, pp. 27\u201346. Springer, Berlin (2009)"},{"key":"2733_CR14","doi-asserted-by":"crossref","unstructured":"Brodlie, K., Osorio, R.A., Lopes, A.: A review of uncertainty in data visualization. In: Expanding the Frontiers of Visual Analytics and Visualization, pp. 81\u2013109 (2012)","DOI":"10.1007\/978-1-4471-2804-5_6"},{"issue":"1","key":"2733_CR15","doi-asserted-by":"crossref","first-page":"04018003","DOI":"10.1061\/AJRUA6.0000949","volume":"4","author":"G Cai","year":"2018","unstructured":"Cai, G., Mahadevan, S.: Big data analytics in uncertainty quantification: application to structural diagnosis and prognosis. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 4(1), 04018003 (2018)","journal-title":"ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng."},{"issue":"10","key":"2733_CR16","doi-asserted-by":"crossref","first-page":"1397","DOI":"10.1007\/s00607-018-0679-5","volume":"101","author":"S Cai","year":"2019","unstructured":"Cai, S., Gallina, B., Nystr\u00f6m, D., Seceleanu, C.: Data aggregation processes: a survey, a taxonomy, and design guidelines. Computing 101(10), 1397\u20131429 (2019)","journal-title":"Computing"},{"key":"2733_CR17","doi-asserted-by":"crossref","first-page":"176","DOI":"10.1016\/j.jcp.2015.06.006","volume":"298","author":"P Chen","year":"2015","unstructured":"Chen, P., Quarteroni, A.: A new algorithm for high-dimensional uncertainty quantification based on dimension-adaptive sparse grid approximation and reduced basis methods. J. Comput. Phys. 298, 176\u2013193 (2015)","journal-title":"J. Comput. Phys."},{"key":"2733_CR18","doi-asserted-by":"crossref","unstructured":"Cheng, R., Emrich, T., Kriegel, H.-P., Mamoulis, N., Renz, M., Trajcevski, G., Z\u00fcfle, A.: Managing uncertainty in spatial and spatio-temporal data. In: 2014 IEEE 30th International Conference on Data Engineering, pp. 1302\u20131305. IEEE (2014)","DOI":"10.1109\/ICDE.2014.6816766"},{"key":"2733_CR19","doi-asserted-by":"crossref","unstructured":"Correa, C.D., Chan, Y.-H., Ma, K.-L.: A framework for uncertainty-aware visual analytics. In: 2009 IEEE Symposium on Visual Analytics Science and Technology, pp. 51\u201358. IEEE (2009)","DOI":"10.1109\/VAST.2009.5332611"},{"issue":"7","key":"2733_CR20","doi-asserted-by":"crossref","first-page":"990","DOI":"10.3758\/s13421-015-0527-1","volume":"43","author":"MVC Coutinho","year":"2015","unstructured":"Coutinho, M.V.C., Redford, J.S., Church, B.A., Zakrzewski, A.C., Couchman, J.J., Smith, J.D.: The interplay between uncertainty monitoring and working memory: Can metacognition become automatic? Mem. Cogn. 43(7), 990\u20131006 (2015)","journal-title":"Mem. Cogn."},{"key":"2733_CR21","doi-asserted-by":"crossref","first-page":"81555","DOI":"10.1109\/ACCESS.2019.2923736","volume":"7","author":"W Cui","year":"2019","unstructured":"Cui, W.: Visual analytics: a comprehensive overview. IEEE Access 7, 81555\u201381573 (2019)","journal-title":"IEEE Access"},{"key":"2733_CR22","volume-title":"Philosophical Dissertations on the Uncertainty of Human Knowledge. With Some Remarks on the Theology of the Grecian Philosophers","author":"M D\u2019 Argens","year":"2018","unstructured":"D\u2019 Argens, M.: Philosophical Dissertations on the Uncertainty of Human Knowledge. With Some Remarks on the Theology of the Grecian Philosophers, vol. 04. Gale Ecco, Farmington Hills (2018)"},{"key":"2733_CR23","unstructured":"Dasgupta, A., Kosara, R.: The need for information loss metrics in visualization. In: Workshop on the Role of Theory in Information Visualization (2010)"},{"key":"2733_CR24","volume-title":"Probability and Statistics for Engineering and the Sciences","author":"JL Devore","year":"2011","unstructured":"Devore, J.L.: Probability and Statistics for Engineering and the Sciences. Cengage Learning, Boston (2011)"},{"issue":"8","key":"2733_CR25","doi-asserted-by":"crossref","first-page":"e3000430","DOI":"10.1371\/journal.pbio.3000430","volume":"17","author":"ME Diamond","year":"2019","unstructured":"Diamond, M.E.: Perceptual uncertainty. PLoS Biol. 17(8), e3000430 (2019)","journal-title":"PLoS Biol."},{"key":"2733_CR26","doi-asserted-by":"crossref","unstructured":"Dogan, G., Brown, T.: Uncertainty modeling in wireless sensor networks. In: Proceedings of the International Conference on Big Data and Internet of Thing (New York, NY, USA), BDIOT2017, pp. 200\u2013204. ACM (2017)","DOI":"10.1145\/3175684.3175692"},{"key":"2733_CR27","doi-asserted-by":"crossref","unstructured":"Engel, D.W., Jarman, K.D., Xu, Z., Zheng, B., Tartakovsky, A.M., Yang, X., Tipireddy, R., Lei, H., Yin, J.: Uq methods for hpda and cybersecurity models, data, and use cases. Technical report, Pacific Northwest National Lab. (PNNL), Richland, WA (United States) (2015)","DOI":"10.2172\/1440713"},{"key":"2733_CR28","doi-asserted-by":"crossref","unstructured":"Enke, B., Graeber, T.: Cognitive uncertainty. Technical report, National Bureau of Economic Research (2019)","DOI":"10.3386\/w26518"},{"key":"2733_CR29","doi-asserted-by":"crossref","unstructured":"Enke, B., Graeber, T.: Cognitive uncertainty. Microeconomics: Decision-Making Under Risk & Uncertainty eJournal (2019)","DOI":"10.3386\/w26518"},{"key":"2733_CR30","doi-asserted-by":"crossref","unstructured":"Federico, P., Amor-Amor\u00f3s, A., Miksch, S.: A nested workflow model for visual analytics design and validation. In: Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization, pp. 104\u2013111 (2016)","DOI":"10.1145\/2993901.2993915"},{"key":"2733_CR31","unstructured":"G\u00fcell, J.M.F.: How to approach urban complexity, diversity and uncertainty when involving stakeholders into the planning process (2017)"},{"key":"2733_CR32","unstructured":"Fodor, I.K.: A survey of dimension reduction techniques. Technical report, Lawrence Livermore National Lab., CA (US) (2002)"},{"key":"2733_CR33","doi-asserted-by":"crossref","unstructured":"Frank, A.U.: Incompleteness, error, approximation, and uncertainty: an ontological approach to data quality. In: Geographic Uncertainty in Environmental Security, pp. 107\u2013131. Springer (2007)","DOI":"10.1007\/978-1-4020-6438-8_7"},{"key":"2733_CR34","unstructured":"Gal, Y.: Uncertainty in deep learning. Ph.D. thesis, University of Cambridge (2016)"},{"key":"2733_CR35","doi-asserted-by":"crossref","unstructured":"Gerrits, T., R\u00f6ssl, C., Theisel, H.: Towards glyphs for uncertain symmetric second-order tensors. In: Computer Graphics Forum, vol.\u00a038, pp. 325\u2013336. Wiley Online Library (2019)","DOI":"10.1111\/cgf.13692"},{"issue":"9","key":"2733_CR36","doi-asserted-by":"crossref","first-page":"109","DOI":"10.3390\/jimaging4090109","volume":"4","author":"C Gillmann","year":"2018","unstructured":"Gillmann, C., Arbelaez, P., Hernandez, J.T., Hagen, H., Wischgoll, T.: An uncertainty-aware visual system for image pre-processing. J. Imaging 4(9), 109 (2018)","journal-title":"J. Imaging"},{"issue":"5","key":"2733_CR37","doi-asserted-by":"crossref","first-page":"90","DOI":"10.1109\/MCG.2021.3099881","volume":"41","author":"C Gillmann","year":"2021","unstructured":"Gillmann, C., Peter, L., Schmidt, C., Saur, D., Scheuermann, G.: Visualizing multimodal deep learning for lesion prediction. IEEE Comput. Graph. Appl. 41(5), 90\u201398 (2021)","journal-title":"IEEE Comput. Graph. Appl."},{"key":"2733_CR38","doi-asserted-by":"crossref","unstructured":"Gillmann, C., Saur, D., Wischgoll, T., Scheuermann, G.: Uncertainty-aware visualization in medical imaging-a survey. In: Computer Graphics Forum, vol.\u00a040, pp. 665\u2013689. Wiley Online Library (2021)","DOI":"10.1111\/cgf.14333"},{"issue":"5","key":"2733_CR39","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1109\/MCG.2021.3094858","volume":"41","author":"C Gillmann","year":"2021","unstructured":"Gillmann, C., Smit, N.N., Gr\u00f6ller, E., Preim, B., Vilanova, A., Wischgoll, T.: Ten open challenges in medical visualization. IEEE Comput. Graph. Appl. 41(5), 7\u201315 (2021)","journal-title":"IEEE Comput. Graph. Appl."},{"key":"2733_CR40","unstructured":"Gillmann, C., Wischgoll, T., Hagen, H.: Uncertainty-awareness in open source visualization solutions (2016)"},{"key":"2733_CR41","unstructured":"Giunta, A.A., Eldred, M.S., Castro, J.P.: Uncertainty quantification using response surface approximations. In: 9th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability, Citeseer, pp. 26\u201328 (2004)"},{"issue":"1","key":"2733_CR42","doi-asserted-by":"crossref","first-page":"822","DOI":"10.1109\/TVCG.2019.2934812","volume":"26","author":"J G\u00f6rtler","year":"2019","unstructured":"G\u00f6rtler, J., Spinner, T., Streeb, D., Weiskopf, D., Deussen, O.: Uncertainty-aware principal component analysis. IEEE Trans. Visu. Comput. Graph. 26(1), 822\u2013831 (2019)","journal-title":"IEEE Trans. Visu. Comput. Graph."},{"key":"2733_CR43","unstructured":"Griethe, H., Schumann, H., et\u00a0al.: The visualization of uncertain data: methods and problems. In: SimVis, pp. 143\u2013156 (2006)"},{"key":"2733_CR44","doi-asserted-by":"crossref","unstructured":"Guo, S., Du, F., Malik, S., Koh, E., Kim, S., Liu, Z., Kim, D., Zha, H., Cao, N.: Visualizing uncertainty and alternatives in event sequence predictions. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1\u201312 (2019)","DOI":"10.1145\/3290605.3300803"},{"key":"2733_CR45","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4471-6497-5","volume-title":"Scientific Visualization: Uncertainty, Multifield, Biomedical, and Scalable Visualization","author":"CD Hansen","year":"2014","unstructured":"Hansen, C.D., Chen, M., Johnson, C.R., Kaufman, A.E., Hagen, H.: Scientific Visualization: Uncertainty, Multifield, Biomedical, and Scalable Visualization. Springer, Cham (2014)"},{"key":"2733_CR46","doi-asserted-by":"crossref","unstructured":"Hasinoff, S.W., Durand, F., Freeman, W.T.: Noise-optimal capture for high dynamic range photography. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 553\u2013560. IEEE (2010)","DOI":"10.1109\/CVPR.2010.5540167"},{"key":"2733_CR47","doi-asserted-by":"crossref","unstructured":"Hegel, T.M., Cushman, S.A., Evans, J., Huettmann, F.: Current state of the art for statistical modelling of species distributions. In: Spatial Complexity, Informatics, and Wildlife Conservation, pp. 273\u2013311. Springer (2010)","DOI":"10.1007\/978-4-431-87771-4_16"},{"key":"2733_CR48","unstructured":"Heinrich, J., Weiskopf, D.: State of the art of parallel coordinates. In: Sbert, M., Szirmay-Kalos, L. (Eds.) Eurographics 2013\u2014State of the Art Reports. The Eurographics Association (2013)"},{"issue":"6","key":"2733_CR49","doi-asserted-by":"crossref","first-page":"881","DOI":"10.1007\/s00778-017-0486-1","volume":"26","author":"M Herschel","year":"2017","unstructured":"Herschel, M., Diestelk\u00e4mper, R., Lahmar, H.B.: A survey on provenance: What for? what form? what from? VLDB J. 26(6), 881\u2013906 (2017)","journal-title":"VLDB J."},{"issue":"2","key":"2733_CR50","first-page":"87","volume":"2011","author":"M H\u00f6ferlin","year":"2011","unstructured":"H\u00f6ferlin, M., H\u00f6ferlin, B., Weiskopf, D., Heidemann, G.: Uncertainty-aware video visual analytics of tracked moving objects. J. Spat. Inf. Sci. 2011(2), 87\u2013117 (2011)","journal-title":"J. Spat. Inf. Sci."},{"key":"2733_CR51","unstructured":"Hoffman, P.E., Grinstein, G.G.: A survey of visualizations for high-dimensional data mining. In: Information visualization in data mining and knowledge discovery, pp. 47\u201382 (2001)"},{"key":"2733_CR52","unstructured":"Hu, Z., Mahadevan, S., Du, X.: Uncertainty quantification in time-dependent reliability analysis. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 57083, p. V02BT03A062. American Society of Mechanical Engineers (2015)"},{"issue":"1","key":"2733_CR53","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1109\/TVCG.2019.2934287","volume":"26","author":"J Hullman","year":"2019","unstructured":"Hullman, J.: Why authors don\u2019t visualize uncertainty. IEEE Trans. Vis. Comput. Graph. 26(1), 130\u2013139 (2019)","journal-title":"IEEE Trans. Vis. Comput. Graph."},{"issue":"1","key":"2733_CR54","doi-asserted-by":"crossref","first-page":"903","DOI":"10.1109\/TVCG.2018.2864889","volume":"25","author":"J Hullman","year":"2018","unstructured":"Hullman, J., Qiao, X., Correll, M., Kale, A., Kay, M.: In pursuit of error: a survey of uncertainty visualization evaluation. IEEE Trans. Vis. Comput. Graph. 25(1), 903\u2013913 (2018)","journal-title":"IEEE Trans. Vis. Comput. Graph."},{"issue":"1","key":"2733_CR55","doi-asserted-by":"crossref","first-page":"200","DOI":"10.1109\/TVCG.2015.2467620","volume":"22","author":"S J\u00e4nicke","year":"2015","unstructured":"J\u00e4nicke, S., Focht, J., Scheuermann, G.: Interactive visual profiling of musicians. IEEE Trans. Vis. Comput. Graph. 22(1), 200\u2013209 (2015)","journal-title":"IEEE Trans. Vis. Comput. Graph."},{"key":"2733_CR56","doi-asserted-by":"crossref","unstructured":"Jena, A., Engelke, U., Dwyer, T., Raiamanickam, V., Paris, C.: Uncertainty visualisation: an interactive visual survey. In: 2020 IEEE Pacific Visualization Symposium (PacificVis), pp. 201\u2013205. IEEE (2020)","DOI":"10.1109\/PacificVis48177.2020.1014"},{"key":"2733_CR57","doi-asserted-by":"crossref","unstructured":"Jiao, F., Phillips, J.M, Stinstra, J., Krger, J., Varma, R., Hsu, E., Korenberg, J., Johnson, C.R.: Metrics for uncertainty analysis and visualization of diffusion tensor images. In: International Workshop on Medical Imaging and Virtual Reality, pp. 179\u2013190. Springer (2010)","DOI":"10.1007\/978-3-642-15699-1_19"},{"key":"2733_CR58","unstructured":"J\u00e4nicke, S., Ge\u00dfner, A., B\u00fcchler, M., Scheuermann, G.: Visualizations for text re-use. In: International Conference on Information Visualization Theory and Applications (IVAPP), 2014, pp. 59\u201370 (2014)"},{"issue":"5","key":"2733_CR59","doi-asserted-by":"crossref","first-page":"861","DOI":"10.1007\/s12650-021-00755-1","volume":"24","author":"A Kamal","year":"2021","unstructured":"Kamal, A., Dhakal, P., Javaid, A.Y., Devabhaktuni, V.K., Kaur, D., Zaientz, J., Marinier, R.: Recent advances and challenges in uncertainty visualization: a survey. J. Vis. 24(5), 861\u2013890 (2021)","journal-title":"J. Vis."},{"key":"2733_CR60","unstructured":"Karami, A.: A framework for uncertainty-aware visual analytics in big data. In: CEUR Workshop Proceedings, vol. 1510, pp. 146\u2013155 (2015)"},{"key":"2733_CR61","doi-asserted-by":"crossref","unstructured":"Kassiano, V., Gounaris, A., Papadopoulos, A.N., Tsichlas, K.: Mining uncertain graphs: an overview. In: International Workshop of Algorithmic Aspects of Cloud Computing, pp. 87\u2013116. Springer (2016)","DOI":"10.1007\/978-3-319-57045-7_6"},{"key":"2733_CR62","first-page":"239","volume":"8","author":"J Kaur","year":"2015","unstructured":"Kaur, J., Madan, N.: Association rule mining: a survey. Int. J. Hybrid Inf. Technol. 8, 239\u2013242 (2015)","journal-title":"Int. J. Hybrid Inf. Technol."},{"key":"2733_CR63","doi-asserted-by":"crossref","unstructured":"Keim, D., Andrienko, G., Fekete, J.-D., G\u00f6rg, C., Kohlhammer, J., Melan\u00e7on, G.: Visual analytics: definition, process, and challenges. In: Information Visualization, pp. 154\u2013175. Springer (2008)","DOI":"10.1007\/978-3-540-70956-5_7"},{"key":"2733_CR64","doi-asserted-by":"crossref","unstructured":"Keim, D., Zhang, L.: Solving problems with visual analytics: challenges and applications. In: Proceedings of the 11th International Conference on Knowledge Management and Knowledge Technologies, pp. 1\u20134 (2011)","DOI":"10.1145\/2024288.2024290"},{"key":"2733_CR65","doi-asserted-by":"crossref","unstructured":"Keim, D.A., Mansmann, F., Schneidewind, J., Thomas, J., Ziegler, H.: Visual analytics: scope and challenges. In: Visual Data Mining, pp. 76\u201390. Springer (2008)","DOI":"10.1007\/978-3-540-71080-6_6"},{"key":"2733_CR66","unstructured":"Kerdjoudj, F., Cur\u00e9, O.: Evaluating Uncertainty in Textual Document. URSW at ISWC (Bethlehem, United States) (2015)"},{"key":"2733_CR67","doi-asserted-by":"crossref","unstructured":"Khulusi, R., Kusnick, J., Meinecke, C., Gillmann, C., Focht, J., J\u00e4nicke, S.: A survey on visualizations for musical data. In: Computer Graphics Forum, vol.\u00a039, pp. 82\u2013110. Wiley Online Library (2020)","DOI":"10.1111\/cgf.13905"},{"key":"2733_CR68","doi-asserted-by":"crossref","unstructured":"Kniss, J.M.: Managing uncertainty in visualization and analysis of medical data. In: 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 832\u2013835. IEEE (2008)","DOI":"10.1109\/ISBI.2008.4541125"},{"key":"2733_CR69","doi-asserted-by":"crossref","unstructured":"Kohlhammer, J., May, T., Hoffmann, M.: Visual analytics for the strategic decision making process. In: Geospatial Visual Analytics, pp. 299\u2013310. Springer (2009)","DOI":"10.1007\/978-90-481-2899-0_23"},{"key":"2733_CR70","unstructured":"Kretzschmar, V., Gillmann, C., G\u00fcnther, F., Stommel, M., Scheuermann, G.: Visualization framework for assisting interface optimization of hybrid component design. In: VMV, pp. 57\u201367 (2020)"},{"issue":"4","key":"2733_CR71","first-page":"263","volume":"70","author":"HH Ku","year":"1966","unstructured":"Ku, H.H.: Notes on the use of propagation of error formulas. J. Res. Natl. Bur. Stand. 70(4), 263\u2013273 (1966)","journal-title":"J. Res. Natl. Bur. Stand."},{"issue":"4","key":"2733_CR72","doi-asserted-by":"crossref","first-page":"1619","DOI":"10.1007\/s00158-019-02270-2","volume":"60","author":"G Lee","year":"2019","unstructured":"Lee, G., Kim, W., Hyunseok, O., Youn, B.D., Kim, N.H.: Review of statistical model calibration and validation-from the perspective of uncertainty structures. Struct. Multidiscip. Optim. 60(4), 1619\u20131644 (2019)","journal-title":"Struct. Multidiscip. Optim."},{"key":"2733_CR73","doi-asserted-by":"crossref","unstructured":"Leffrang, D., M\u00fcller, O.: Should i follow this model? the effect of uncertainty visualization on the acceptance of time series forecasts. In: 2021 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX), pp. 20\u201326. IEEE (2021)","DOI":"10.1109\/TREX53765.2021.00009"},{"key":"2733_CR74","doi-asserted-by":"crossref","unstructured":"Lewandowsky, S., Ballard, T., Pancost, R.D: Uncertainty as knowledge, p.\u00a020140462 (2015)","DOI":"10.1098\/rsta.2014.0462"},{"key":"2733_CR75","first-page":"313","volume-title":"Spatial Data Uncertainty","author":"L Li","year":"2017","unstructured":"Li, L., Ban, H., Wechsler, S., Xu, B.: Spatial Data Uncertainty, vol. 1, pp. 313\u2013340. Elsevier, Amsterdam (2017)"},{"key":"2733_CR76","doi-asserted-by":"crossref","unstructured":"Lin, G., Engel, D.W, Eslinger, P.W.: Survey and evaluate uncertainty quantification methodologies. Technical report, Pacific Northwest National Lab. (PNNL), Richland, WA (United States) (2012)","DOI":"10.2172\/1035732"},{"key":"2733_CR77","doi-asserted-by":"crossref","unstructured":"Lip\u015fa, D.R., Laramee, R.S., Cox, S.J., Roberts, J.C., Walker, R., Borkin, M.A., Pfister, H.: Visualization for the physical sciences. In: Computer Graphics Forum, vol.\u00a031, pp. 2317\u20132347. Wiley Online Library (2012)","DOI":"10.1111\/j.1467-8659.2012.03184.x"},{"issue":"4","key":"2733_CR78","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1016\/j.visinf.2018.12.001","volume":"2","author":"S Liu","year":"2018","unstructured":"Liu, S., Andrienko, G., Yingcai, W., Cao, N., Jiang, L., Shi, C., Wang, Y.-S., Hong, S.: Steering data quality with visual analytics: the complexity challenge. Vis. Inform. 2(4), 191\u2013197 (2018)","journal-title":"Vis. Inform."},{"key":"2733_CR79","doi-asserted-by":"crossref","unstructured":"Loucks, D.P., van Beek, E.: An introduction to probability, statistics, and uncertainty. In: Water Resource Systems Planning and Management, pp. 213\u2013300. Springer (2017)","DOI":"10.1007\/978-3-319-44234-1_6"},{"key":"2733_CR80","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1016\/j.cag.2021.05.011","volume":"98","author":"RGC Maack","year":"2021","unstructured":"Maack, R.G.C., Raymer, M.L., Wischgoll, T., Hagen, H., Gillmann, C.: A framework for uncertainty-aware visual analytics of proteins. Comput. Graph. 98, 293\u2013305 (2021)","journal-title":"Comput. Graph."},{"key":"2733_CR81","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1559\/1523040054738936","volume":"32","author":"A MacEachren","year":"2005","unstructured":"MacEachren, A., Robinson, A., Hopper, S., Gardner, S., Murray, R., Gahegan, M., Hetzler, E.: Visualizing geospatial information uncertainty: What we know and what we need to know. Cartogr. Geogr. Inf. Sci. 32, 139\u2013160 (2005)","journal-title":"Cartogr. Geogr. Inf. Sci."},{"key":"2733_CR82","unstructured":"MacEachren, A.M: Visual analytics and uncertainty: its not about the data (2015)"},{"key":"2733_CR83","volume-title":"Sensitivity and Uncertainity","author":"H Maier","year":"2008","unstructured":"Maier, H., Tolson, B.: Sensitivity and Uncertainity. Elsevier, Amsterdam (2008)"},{"issue":"40","key":"2733_CR84","doi-asserted-by":"crossref","first-page":"675","DOI":"10.1007\/s10584-011-0178-6","volume":"108","author":"MD Mastrandrea","year":"2011","unstructured":"Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Edenhofer, O., Stocker, T.F., Field, C.B., Ebi, K.L., Matschoss, P.R.: The ipcc ar5 guidance note on consistent treatment of uncertainties: a common approach across the working groups. Clim. Change 108(40), 675\u2013691 (2011)","journal-title":"Clim. Change"},{"key":"2733_CR85","unstructured":"Olston, C., Mackinlay, J.D.: Visualizing data with bounded uncertainty. In: IEEE Symposium on Information Visualization, 2002. INFOVIS 2002, pp. 37\u201340. IEEE (2002)"},{"key":"2733_CR86","doi-asserted-by":"crossref","unstructured":"Pfeiffer, J.J: Using brightness and saturation to visualize belief and uncertainty. In: International Conference on Theory and Application of Diagrams, pp. 279\u2013289. Springer (2002)","DOI":"10.1007\/3-540-46037-3_27"},{"key":"2733_CR87","doi-asserted-by":"crossref","unstructured":"Plaisant, C.: The challenge of information visualization evaluation. In: Proceedings of the Working Conference on Advanced Visual Interfaces (New York, NY, USA), AVI \u201904, pp.\u00a0109\u2013116. Association for Computing Machinery (2004)","DOI":"10.1145\/989863.989880"},{"key":"2733_CR88","doi-asserted-by":"crossref","unstructured":"Potter, K., Rosen, P., Johnson, C.R.: From quantification to visualization: a taxonomy of uncertainty visualization approaches. In: IFIP Working Conference on Uncertainty Quantification, pp. 226\u2013249. Springer (2011)","DOI":"10.1007\/978-3-642-32677-6_15"},{"issue":"5","key":"2733_CR89","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1109\/MCG.2019.2918158","volume":"39","author":"A Preston","year":"2019","unstructured":"Preston, A., Gomov, M., Ma, K.-L.: Uncertainty-aware visualization for analyzing heterogeneous wildfire detections. IEEE Comput. Graph. Appl. 39(5), 72\u201382 (2019)","journal-title":"IEEE Comput. Graph. Appl."},{"issue":"1","key":"2733_CR90","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1109\/TVCG.2015.2467551","volume":"22","author":"ED Ragan","year":"2015","unstructured":"Ragan, E.D., Endert, A., Sanyal, J., Chen, J.: Characterizing provenance in visualization and data analysis: an organizational framework of provenance types and purposes. IEEE Trans. Visu. Comput. Graph. 22(1), 31\u201340 (2015)","journal-title":"IEEE Trans. Visu. Comput. Graph."},{"key":"2733_CR91","unstructured":"Raith, F., Scheuermann, G., Gillmann, C.: Uncertainty-aware detection and visualization of ocean eddies in ensemble flow fields\u2014a case study of the Red Sea. In: Proceedings of the Workshop on Visualisation in Environmental Sciences (2021)"},{"key":"2733_CR92","doi-asserted-by":"crossref","unstructured":"Ranftl, S., von\u00a0der Linden, W., MaxEnt 2021\u00a0Scientific Committee: Bayesian surrogate analysis and uncertainty propagation. In: Physical Sciences Forum, vol.\u00a03, MDPI, p.\u00a06 (2021)","DOI":"10.3390\/psf2021003006"},{"issue":"8","key":"2733_CR93","doi-asserted-by":"crossref","first-page":"1197","DOI":"10.1016\/j.ress.2007.08.001","volume":"93","author":"R Rebba","year":"2008","unstructured":"Rebba, R., Mahadevan, S.: Computational methods for model reliability assessment. Reliab. Eng. Syst. Saf. 93(8), 1197\u20131207 (2008)","journal-title":"Reliab. Eng. Syst. Saf."},{"key":"2733_CR94","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1016\/j.cag.2013.10.015","volume":"39","author":"G Ristovski","year":"2014","unstructured":"Ristovski, G., Preusser, T., Hahn, H.K., Linsen, L.: Uncertainty in medical visualization: towards a taxonomy. Comput. Graph. 39, 60\u201373 (2014)","journal-title":"Comput. Graph."},{"key":"2733_CR95","doi-asserted-by":"crossref","unstructured":"Souza, R.R., Dorn, A., Piringer, B., Wandl-Vogt, E.: Towards a taxonomy of uncertainties: analysing sources of spatio-temporal uncertainty on the example of non-standard German corpora. In: Informatics, vol.\u00a06, p.\u00a034. Multidisciplinary Digital Publishing Institute (2019)","DOI":"10.3390\/informatics6030034"},{"issue":"1","key":"2733_CR96","doi-asserted-by":"crossref","first-page":"240","DOI":"10.1109\/TVCG.2015.2467591","volume":"22","author":"D Sacha","year":"2015","unstructured":"Sacha, D., Senaratne, H., Kwon, B.C., Ellis, G., Keim, D.A.: The role of uncertainty, awareness, and trust in visual analytics. IEEE Trans. Vis. Comput. Graph. 22(1), 240\u2013249 (2015)","journal-title":"IEEE Trans. Vis. Comput. Graph."},{"issue":"12","key":"2733_CR97","doi-asserted-by":"crossref","first-page":"1604","DOI":"10.1109\/TVCG.2014.2346481","volume":"20","author":"D Sacha","year":"2014","unstructured":"Sacha, D., Stoffel, A., Stoffel, F., Kwon, B.C., Ellis, G., Keim, D.A.: Knowledge generation model for visual analytics. IEEE Trans. Vis. Comput. Graph. 20(12), 1604\u20131613 (2014)","journal-title":"IEEE Trans. Vis. Comput. Graph."},{"key":"2733_CR98","volume-title":"Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models","author":"A Saltelli","year":"2004","unstructured":"Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M.: Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models. Halsted Press, New York (2004)"},{"issue":"1","key":"2733_CR99","doi-asserted-by":"crossref","first-page":"531","DOI":"10.1109\/TVCG.2016.2598919","volume":"23","author":"C Schulz","year":"2016","unstructured":"Schulz, C., Nocaj, A., Goertler, J., Deussen, O., Brandes, U., Weiskopf, D.: Probabilistic graph layout for uncertain network visualization. IEEE Trans. Vis. Comput. Graph. 23(1), 531\u2013540 (2016)","journal-title":"IEEE Trans. Vis. Comput. Graph."},{"key":"2733_CR100","unstructured":"Senaratne, H.V.: Uncertainty-aware visual analytics for spatio-temporal data exploration. Ph.D. thesis, Universit\u00e4t Konstanz, Konstanz (2017)"},{"issue":"1","key":"2733_CR101","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/S0360-8352(97)00147-2","volume":"34","author":"M-L Shyu","year":"1998","unstructured":"Shyu, M.-L., Haruechaiyasak, C., Chen, S.-C., Premaratne, K.: Mining association rules with uncertain item relationships. Comput. Ind. Eng. 34(1), 3\u201320 (1998)","journal-title":"Comput. Ind. Eng."},{"key":"2733_CR102","doi-asserted-by":"crossref","unstructured":"Sodergren, T., Hair, J., Phillips, J.M., Wang, B.: Visualizing sensor network coverage with location uncertainty. In: 2017 IEEE Visualization in Data Science (VDS), pp. 52\u201359. IEEE (2017)","DOI":"10.1109\/VDS.2017.8573448"},{"key":"2733_CR103","unstructured":"Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv (2014)"},{"issue":"1","key":"2733_CR104","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/2213-7459-1-1","volume":"1","author":"X Su","year":"2013","unstructured":"Su, X., Talmaki, S., Cai, H., Kamat, V.R.: Uncertainty-aware visualization and proximity monitoring in urban excavation: a geospatial augmented reality approach. Vis. Eng. 1(1), 1\u201313 (2013)","journal-title":"Vis. Eng."},{"issue":"4","key":"2733_CR105","doi-asserted-by":"crossref","first-page":"26","DOI":"10.1145\/3231772","volume":"25","author":"DA Szafir","year":"2018","unstructured":"Szafir, D.A.: The good, the bad, and the biased: five ways visualizations can mislead (and how to fix them). Interactions 25(4), 26\u201333 (2018)","journal-title":"Interactions"},{"key":"2733_CR106","doi-asserted-by":"crossref","DOI":"10.4324\/9781315730950","volume-title":"World City Network: A Global Urban Analysis","author":"P Taylor","year":"2015","unstructured":"Taylor, P., Derudder, B.: World City Network: A Global Urban Analysis. Routledge, New York (2015)"},{"key":"2733_CR107","doi-asserted-by":"crossref","unstructured":"Ther\u00f3n, R., De Paz, J.F.: Visual sensitivity analysis for artificial neural networks. In: International Conference on Intelligent Data Engineering and Automated Learning, pp. 191\u2013198. Springer (2006)","DOI":"10.1007\/11875581_23"},{"key":"2733_CR108","doi-asserted-by":"crossref","unstructured":"S\u00e1nchez, R.T., Santos, A.B., Vicente, R.S., G\u00f3mez, A.L.:Towards an uncertainty-aware visualization in the digital humanities. In: Informatics, vol.\u00a06, p.\u00a031. Multidisciplinary Digital Publishing Institute (2019)","DOI":"10.3390\/informatics6030031"},{"key":"2733_CR109","unstructured":"Thomas, J.J., Cook, K.A: Illuminating the path: the research and development agenda for visual analytics. Technical report, Pacific Northwest National Lab. (PNNL), Richland, WA (United States) (2005)"},{"key":"2733_CR110","volume-title":"Advances in Spatial Data Handling: Geospatial Dynamics, Geosimulation and Exploratory Visualization","author":"S Timpf","year":"2012","unstructured":"Timpf, S., Laube, P.: Advances in Spatial Data Handling: Geospatial Dynamics, Geosimulation and Exploratory Visualization. Springer, Berlin (2012)"},{"key":"2733_CR111","doi-asserted-by":"crossref","unstructured":"Varga, M., Varga, C.: Visual analytics: data, analytical and reasoning provenance. In: Building Trust in Information, pp. 141\u2013150. Springer (2016)","DOI":"10.1007\/978-3-319-40226-0_9"},{"issue":"19","key":"2733_CR112","first-page":"1","volume":"14","author":"C Vehlow","year":"2013","unstructured":"Vehlow, C., Hasenauer, J., Kramer, A., Raue, A., Hug, S., Timmer, J., Radde, N., Theis, F.J., Weiskopf, D.: IVUN: interactive visualization of uncertain biochemical reaction networks. BMC Bioinform. 14(19), 1\u201314 (2013)","journal-title":"BMC Bioinform."},{"key":"2733_CR113","doi-asserted-by":"crossref","unstructured":"Vosough, Z., Kammer, D., Keck, M., Groh, R.: Visualizing uncertainty in flow diagrams: a case study in product costing. In: Proceedings of the 10th International Symposium on Visual Information Communication and Interaction, pp. 1\u20138 (2017)","DOI":"10.1145\/3105971.3105972"},{"key":"2733_CR114","doi-asserted-by":"crossref","unstructured":"Wall, E., Blaha, L.M., Paul, C.L., Cook, K., Endert, A.: Four perspectives on human bias in visual analytics. In: Cognitive Biases in Visualizations, pp. 29\u201342. Springer (2018)","DOI":"10.1007\/978-3-319-95831-6_3"},{"key":"2733_CR115","doi-asserted-by":"crossref","unstructured":"Wallace, M., Platis, N.: The uncertain tag cloud. In: 2015 10th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP), pp. 1\u20135 (2015)","DOI":"10.1109\/SMAP.2015.7370094"},{"issue":"5","key":"2733_CR116","first-page":"1","volume":"53","author":"H Wang","year":"2020","unstructured":"Wang, H., Yeung, D.-Y.: A survey on Bayesian deep learning. ACM Comput. Surv. (CSUR) 53(5), 1\u201337 (2020)","journal-title":"ACM Comput. Surv. (CSUR)"},{"key":"2733_CR117","first-page":"1","volume":"PP","author":"J Wang","year":"2018","unstructured":"Wang, J., Hazarika, S., Li, C., Shen, H.-W.: Visualization and visual analysis of ensemble data: a survey. IEEE Trans. Vis. Comput. Graph. PP, 1\u20131 (2018)","journal-title":"IEEE Trans. Vis. Comput. Graph."},{"key":"2733_CR118","volume-title":"Interactive Data Visualization: Foundations, Techniques, and Applications","author":"M Ward","year":"2010","unstructured":"Ward, M., Grinstein, G., Keim, D.: Interactive Data Visualization: Foundations, Techniques, and Applications. A. K. Peters Ltd, Natick (2010)"},{"issue":"4","key":"2733_CR119","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1007\/s00466-009-0445-9","volume":"45","author":"N Watanabe","year":"2010","unstructured":"Watanabe, N., Wang, W., McDermott, C.I., Taniguchi, T., Kolditz, O.: Uncertainty analysis of thermo-hydro-mechanical coupled processes in heterogeneous porous media. Comput. Mech. 45(4), 263\u2013280 (2010)","journal-title":"Comput. Mech."},{"key":"2733_CR120","doi-asserted-by":"crossref","unstructured":"Wilson, R., Granlund, G.H.: The uncertainty principle in image processing. IEEE Trans. Pattern Anal. Mach. Intell. (6), 758\u2013767 (1984)","DOI":"10.1109\/TPAMI.1984.4767599"},{"issue":"4","key":"2733_CR121","doi-asserted-by":"crossref","first-page":"314","DOI":"10.1093\/jamia\/ocy190","volume":"26","author":"DTY Wu","year":"2019","unstructured":"Wu, D.T.Y., Chen, A.T., Manning, J.D., Levy-Fix, G., Backonja, U., Borland, D., Caban, J.J., Dowding, D.W., Hochheiser, H., Kagan, V., et al.: Evaluating visual analytics for health informatics applications: a systematic review from the American Medical Informatics Association visual analytics working group task force on evaluation. J. Am. Med. Inform. Assoc. 26(4), 314\u2013323 (2019)","journal-title":"J. Am. Med. Inform. Assoc."},{"key":"2733_CR122","doi-asserted-by":"crossref","unstructured":"Xu, K., Ottley, A., Walchshofer, C., Streit, M., Chang, R., Wenskovitch, J.: Survey on the analysis of user interactions and visualization provenance. In: Computer Graphics Forum, vol.\u00a039, pp. 757\u2013783. Wiley Online Library (2020)","DOI":"10.1111\/cgf.14035"},{"issue":"3","key":"2733_CR123","doi-asserted-by":"crossref","first-page":"645","DOI":"10.1109\/TNN.2005.845141","volume":"16","author":"X Rui","year":"2005","unstructured":"Rui, X., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3), 645\u2013678 (2005)","journal-title":"IEEE Trans. Neural Netw."},{"issue":"1","key":"2733_CR124","doi-asserted-by":"crossref","first-page":"832","DOI":"10.1109\/TVCG.2019.2934242","volume":"26","author":"L Yan","year":"2019","unstructured":"Yan, L., Wang, Y., Munch, E., Gasparovic, E., Wang, B.: A structural average of labeled merge trees for uncertainty visualization. IEEE Trans. Vis. Comput. Graph. 26(1), 832\u2013842 (2019)","journal-title":"IEEE Trans. Vis. Comput. Graph."},{"issue":"11","key":"2733_CR125","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/0895-7177(93)90202-A","volume":"18","author":"M-S Yang","year":"1993","unstructured":"Yang, M.-S.: A survey of fuzzy clustering. Math. Comput. Model. 18(11), 1\u201316 (1993)","journal-title":"Math. Comput. Model."},{"key":"2733_CR126","doi-asserted-by":"crossref","unstructured":"Zhou, X., Liu, H., Pourpanah, F., Zeng, T., Wang, X.: A survey on epistemic (model) uncertainty in supervised learning: recent advances and applications. Neurocomputing (2021)","DOI":"10.1016\/j.neucom.2021.10.119"}],"container-title":["The Visual Computer"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00371-022-02733-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00371-022-02733-6\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00371-022-02733-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,10]],"date-time":"2024-10-10T22:45:58Z","timestamp":1728600358000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00371-022-02733-6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,12,23]]},"references-count":126,"journal-issue":{"issue":"12","published-print":{"date-parts":[[2023,12]]}},"alternative-id":["2733"],"URL":"https:\/\/doi.org\/10.1007\/s00371-022-02733-6","relation":{},"ISSN":["0178-2789","1432-2315"],"issn-type":[{"type":"print","value":"0178-2789"},{"type":"electronic","value":"1432-2315"}],"subject":[],"published":{"date-parts":[[2022,12,23]]},"assertion":[{"value":"3 November 2022","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"23 December 2022","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors have no conflicts of interests to declare.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}