{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T09:50:32Z","timestamp":1726134632644},"reference-count":61,"publisher":"Springer Science and Business Media LLC","issue":"6-8","license":[{"start":{"date-parts":[[2019,5,9]],"date-time":"2019-05-09T00:00:00Z","timestamp":1557360000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100001317","name":"Swansea University","doi-asserted-by":"crossref","id":[{"id":"10.13039\/501100001317","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Vis Comput"],"published-print":{"date-parts":[[2019,6]]},"DOI":"10.1007\/s00371-019-01673-y","type":"journal-article","created":{"date-parts":[[2019,5,10]],"date-time":"2019-05-10T10:59:37Z","timestamp":1557485977000},"page":"1013-1026","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":75,"title":["TimeCluster: dimension reduction applied to temporal data for visual analytics"],"prefix":"10.1007","volume":"35","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5908-4013","authenticated-orcid":false,"given":"Mohammed","family":"Ali","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8991-1190","authenticated-orcid":false,"given":"Mark W.","family":"Jones","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2701-8660","authenticated-orcid":false,"given":"Xianghua","family":"Xie","sequence":"additional","affiliation":[]},{"given":"Mark","family":"Williams","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,5,9]]},"reference":[{"key":"1673_CR1","unstructured":"Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X.: Tensorflow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265\u2013283 (2016)"},{"key":"1673_CR2","doi-asserted-by":"crossref","unstructured":"Abdelhameed, A.M., Daoud, H.G., Bayoumi, M.: Epileptic seizure detection using deep convolutional autoencoder. In: 2018 IEEE International Workshop on Signal Processing Systems (SiPS), pp. 223\u2013228 (2018)","DOI":"10.1109\/SiPS.2018.8598447"},{"key":"1673_CR3","doi-asserted-by":"crossref","unstructured":"Albers, D., Correll, M., Gleicher, M.: Task-driven evaluation of aggregation in time series visualization. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI Conference, pp. 551\u2013560 (2014)","DOI":"10.1145\/2556288.2557200"},{"key":"1673_CR4","doi-asserted-by":"crossref","unstructured":"Ali, M., Jones, M., Xie, X., Williams, M.: Towards visual exploration of large temporal datasets. In: 2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA), pp. 1\u20139 (2018)","DOI":"10.1109\/BDVA.2018.8534025"},{"key":"1673_CR5","unstructured":"Alsallakh, B., B\u00f6gl, M., Gschwandtner, T., Miksch, S., Esmael, B., Arnaout, A., Thonhauser, G., Z\u00f6llner, P.: A visual analytics approach to segmenting and labeling multivariate time series data. In: EuroVis Workshop on Visual Analytics, pp. 31\u201335. The Eurographics Association (2014)"},{"key":"1673_CR6","doi-asserted-by":"publisher","first-page":"38","DOI":"10.1038\/nbt.4314","volume":"37","author":"E Becht","year":"2019","unstructured":"Becht, E., McInnes, L., Healy, J., Dutertre, C.-A., Kwok, I.W.H., Ng, L.G., Ginhoux, F., Newell, E.W.: Dimensionality reduction for visualizing single-cell data using umap. Nat. Biotechnol. 37, 38\u201344 (2019)","journal-title":"Nat. Biotechnol."},{"key":"1673_CR7","doi-asserted-by":"publisher","first-page":"298","DOI":"10.1109\/TVCG.2017.2744818","volume":"24","author":"J Bernard","year":"2018","unstructured":"Bernard, J., Hutter, M., Zeppelzauer, M., Fellner, D.W., Sedlmair, M.: Comparing visual-interactive labeling with active learning: an experimental study. IEEE Trans. Vis. Comput. Graph. 24, 298\u2013308 (2018)","journal-title":"IEEE Trans. Vis. Comput. Graph."},{"key":"1673_CR8","doi-asserted-by":"publisher","first-page":"1189","DOI":"10.1007\/s00371-018-1500-3","volume":"34","author":"J Bernard","year":"2018","unstructured":"Bernard, J., Zeppelzauer, M., Sedlmair, M., Aigner, W.: Vial: a unified process for visual interactive labeling. Vis. Comput. 34, 1189\u20131207 (2018)","journal-title":"Vis. Comput."},{"key":"1673_CR9","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1186\/s40462-015-0055-4","volume":"3","author":"OR Bidder","year":"2015","unstructured":"Bidder, O.R., Walker, J.S., Jones, M.W., Holton, M.D., Urge, P., Scantlebury, D.M., Marks, N.J., Magowan, E.A., Maguire, I.E., Wilson, R.P.: Step by step: reconstruction of terrestrial animal movement paths by dead-reckoning. Mov. Ecol. 3, 23 (2015)","journal-title":"Mov. Ecol."},{"key":"1673_CR10","doi-asserted-by":"crossref","unstructured":"Brunker, A.S., Nguyen, Q.V., Maeder, A.J., Tague, R., Kolt, G.S., Savage, T.N., Vandelanotte, C., Duncan, M.J., Caperchione, C.M.. Rosenkranz, R.R., Van Itallie, A., Mummery, W.K.: A time-based visualization for web user classification in social networks. In: Proceedings of the 7th International Symposium on Visual Information Communication and Interaction, pp. 98:98\u201398:105 (2014)","DOI":"10.1145\/2636240.2636842"},{"key":"1673_CR11","doi-asserted-by":"crossref","unstructured":"Buono, P., Aris, A., Plaisant, C., Khella, A., Shneiderman, B.: Interactive pattern search in time series. In: Proceedings of SPIE, vol. 5669 (2005)","DOI":"10.1117\/12.587537"},{"key":"1673_CR12","doi-asserted-by":"publisher","unstructured":"Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-based clustering based on hierarchical density estimates. In: Pei J, Tseng VS, Cao L, Motoda H, Xu G (eds) Advances in Knowledge Discovery and Data Mining, . Springer, Berlin, Heidelberg pp. 160\u2013172 (2013). \n https:\/\/doi.org\/10.1007\/978-3-642-37456-2_14","DOI":"10.1007\/978-3-642-37456-2_14"},{"issue":"1","key":"1673_CR13","doi-asserted-by":"publisher","first-page":"267","DOI":"10.1109\/TVCG.2018.2864477","volume":"25","author":"M Cavallo","year":"2019","unstructured":"Cavallo, M., Demiralp, \u00c7.: Clustrophile 2: guided visual clustering analysis. IEEE Trans. Vis. Comput. Graph. 25(1), 267\u2013276 (2019)","journal-title":"IEEE Trans. Vis. Comput. Graph."},{"key":"1673_CR14","doi-asserted-by":"crossref","unstructured":"Cheung, C.M., Goyal, P., Prasanna, V.K., Tehrani, A.S.: Oreonet: Deep convolutional network for oil reservoir optimization. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 1277\u20131282 (2017)","DOI":"10.1109\/BigData.2017.8258055"},{"key":"1673_CR15","unstructured":"Chollet, F., et al.: Keras: The python deep learning library (2015). \n https:\/\/keras.io\n \n . Accessed 9 Feb 2019"},{"key":"1673_CR16","doi-asserted-by":"crossref","unstructured":"Correll, M., Albers, D., Franconeri, S., Gleicher, M.: Comparing averages in time series data. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1095\u20131104 (2012)","DOI":"10.1145\/2207676.2208556"},{"key":"1673_CR17","doi-asserted-by":"publisher","first-page":"523","DOI":"10.1109\/TVCG.2018.2865077","volume":"25","author":"A Gogolou","year":"2019","unstructured":"Gogolou, A., Tsandilas, T., Palpanas, T., Bezerianos, A.: Comparing similarity perception in time series visualizations. IEEE Trans. Vis. Comput. Graph. 25, 523\u2013533 (2019)","journal-title":"IEEE Trans. Vis. Comput. Graph."},{"issue":"3","key":"1673_CR18","doi-asserted-by":"publisher","first-page":"815","DOI":"10.1111\/j.1467-8659.2009.01469.x","volume":"28","author":"E Grundy","year":"2009","unstructured":"Grundy, E., Jones, M.W., Laramee, R.S., Wilson, R.P., Shepard, E.L.: Visualisation of sensor data from animal movement. Comput. Graph. Forum 28(3), 815\u2013822 (2009)","journal-title":"Comput. Graph. Forum"},{"key":"1673_CR19","doi-asserted-by":"publisher","unstructured":"Guo, X., Liu, X., Zhu, E., Yin, J.: Deep clustering with convolutional autoencoders. In: Liu D, Xie S, Li Y, Zhao D, El-Alfy EM (eds) Neural Information Processing. Springer, Cham, pp. 373\u2013382 (2017). \n https:\/\/doi.org\/10.1007\/978-3-319-70096-0_39","DOI":"10.1007\/978-3-319-70096-0_39"},{"key":"1673_CR20","doi-asserted-by":"publisher","first-page":"252","DOI":"10.1186\/1471-2105-14-252","volume":"14","author":"J Hensman","year":"2013","unstructured":"Hensman, J., Lawrence, N.D., Rattray, M.: Hierarchical bayesian modelling of gene expression time series across irregularly sampled replicates and clusters. BMC Bioinform. 14, 252 (2013)","journal-title":"BMC Bioinform."},{"issue":"7","key":"1673_CR21","doi-asserted-by":"publisher","first-page":"1551","DOI":"10.1109\/TMI.2017.2715285","volume":"37","author":"H Huang","year":"2018","unstructured":"Huang, H., Hu, X., Zhao, Y., Makkie, M., Dong, Q., Zhao, S., Guo, L., Liu, T.: Modeling task fmri data via deep convolutional autoencoder. IEEE Trans. Med. Imaging 37(7), 1551\u20131561 (2018)","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"6","key":"1673_CR22","doi-asserted-by":"publisher","first-page":"927","DOI":"10.1109\/TVCG.2010.162","volume":"16","author":"W Javed","year":"2010","unstructured":"Javed, W., McDonnel, B., Elmqvist, N.: Graphical perception of multiple time series. IEEE Trans. Vis. Comput. Graph. 16(6), 927\u2013934 (2010)","journal-title":"IEEE Trans. Vis. Comput. Graph."},{"key":"1673_CR23","unstructured":"Keim, D., Kohlhammer, J., Ellis, G., Mansmann, F.: Mastering the information age: solving problems with visual analytics. Eurographics Association (2010)"},{"key":"1673_CR24","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). CoRR \n arXiv:1412.6980"},{"key":"1673_CR25","first-page":"1097","volume":"25","author":"A Krizhevsky","year":"2012","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097\u20131105 (2012)","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"12","key":"1673_CR26","doi-asserted-by":"publisher","first-page":"2109","DOI":"10.1109\/TVCG.2013.207","volume":"19","author":"PA Legg","year":"2013","unstructured":"Legg, P.A., Chung, D.H.S., Parry, M.L., Bown, R., Jones, M.W., Griffiths, I.W., Chen, M.: Transformation of an uncertain video search pipeline to a sketch-based visual analytics loop. IEEE Trans. Vis. Comput. Graph. 19(12), 2109\u20132118 (2013)","journal-title":"IEEE Trans. Vis. Comput. Graph."},{"key":"1673_CR27","unstructured":"Lesch, R.H., Caill\u00e9, Y., Lowe, D.: Component analysis in financial time series. In: Computational Intelligence for Financial Engineering, 1999. In: (CIFEr) Proceedings of the IEEE\/IAFE 1999 Conference on, pp. 183\u2013190 (1999)"},{"key":"1673_CR28","doi-asserted-by":"publisher","unstructured":"Li, J., Chen, S., Zhang, K., Andrienko, G., Andrienko, N.: Cope: Interactive exploration of co-occurrence patterns in spatial time series. IEEE Trans. Vis. Comput. Graph. 1\u201314 (2018). \n https:\/\/doi.org\/10.1109\/TVCG.2018.2851227","DOI":"10.1109\/TVCG.2018.2851227"},{"key":"1673_CR29","doi-asserted-by":"crossref","unstructured":"Li, Y., Lin, J., Oates, T.: Visualizing variable-length time series motifs. In: Proceedings of the 2012 SIAM International Conference on Data Mining, pp. 895\u2013906 (2012)","DOI":"10.1137\/1.9781611972825.77"},{"issue":"2","key":"1673_CR30","doi-asserted-by":"publisher","first-page":"61","DOI":"10.1057\/palgrave.ivs.9500089","volume":"4","author":"J Lin","year":"2005","unstructured":"Lin, J., Keogh, E.J., Lonardi, S.: Visualizing and discovering non-trivial patterns in large time series databases. Inf. Vis. 4(2), 61\u201382 (2005)","journal-title":"Inf. Vis."},{"key":"1673_CR31","unstructured":"Lonardi, J., Patel, P.: Finding motifs in time series. In: Proceedings of the 2nd Workshop on Temporal Data Mining, pp. 53\u201368 (2002)"},{"key":"1673_CR32","doi-asserted-by":"crossref","unstructured":"Martinez-Murcia, F.J., Ortiz, A., Gorriz, J.M., Ramirez, J., Castillo-Barnes, D., Salas-Gonzalez, D., Segovia, F.: Deep convolutional autoencoders vs PCA in a highly-unbalanced Parkinson\u2019s disease dataset: a datscan study. In: International Joint Conference SOCO\u201918-CISIS\u201918-ICEUTE\u201918, pp. 47\u201356 (2019)","DOI":"10.1007\/978-3-319-94120-2_5"},{"key":"1673_CR33","unstructured":"McInnes, L., Healy, J., Melville, J.: UMAP: Uniform manifold approximation and projection for dimension reduction (2018). arXiv e-prints, page \n arXiv:1802.03426"},{"key":"1673_CR34","doi-asserted-by":"crossref","unstructured":"Mohseni-Kabir, A., Wu, V., Chernova, S., Rich, C.: What\u2019s in a primitive? Identifying reusable motion trajectories in narrated demonstrations. In: 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 267\u2013272 (2016)","DOI":"10.1109\/ROMAN.2016.7745141"},{"key":"1673_CR35","unstructured":"Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807\u2013814 (2010)"},{"issue":"3","key":"1673_CR36","doi-asserted-by":"publisher","first-page":"470","DOI":"10.1109\/TVCG.2012.128","volume":"19","author":"DT Nhon","year":"2013","unstructured":"Nhon, D.T., Anand, A., Wilkinson, L.: Timeseer: scagnostics for high-dimensional time series. IEEE Trans. Vis. Comput. Graph. 19(3), 470\u2013483 (2013)","journal-title":"IEEE Trans. Vis. Comput. Graph."},{"key":"1673_CR37","unstructured":"Ord\u00f3\u00f1ez, P., DesJardins, M., Feltes, C., Lehmann, C.U., Fackler, J.C.: Visualizing multivariate time series data to detect specific medical conditions. AMIA, pp. 530\u2013534 (2008)"},{"key":"1673_CR38","doi-asserted-by":"crossref","unstructured":"Perin, C., Vernier, F., Fekete, J.-D.; Interactive horizon graphs: Improving the compact visualization of multiple time series. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3217\u20133226 (2013)","DOI":"10.1145\/2470654.2466441"},{"key":"1673_CR39","doi-asserted-by":"crossref","unstructured":"Rohlig, M., Luboschik, M., Schumann, H., B\u00f6gl, M., Alsallakh, B., Miksch, S.: Analyzing parameter influence on time-series segmentation and labeling. In: 2014 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 269\u2013270 (2014)","DOI":"10.1109\/VAST.2014.7042524"},{"key":"1673_CR40","doi-asserted-by":"crossref","unstructured":"Scherer, D., M\u00fcller, A., Behnke, S.: Evaluation of pooling operations in convolutional architectures for object recognition. In: Artificial Neural Networks\u2014ICANN 2010, pp. 92\u2013101 (2010)","DOI":"10.1007\/978-3-642-15825-4_10"},{"issue":"12","key":"1673_CR41","doi-asserted-by":"publisher","first-page":"2634","DOI":"10.1109\/TVCG.2013.153","volume":"19","author":"M Sedlmair","year":"2013","unstructured":"Sedlmair, M., Munzner, T., Tory, M.: Empirical guidance on scatterplot and dimension reduction technique choices. IEEE Trans. Vis. Comput. Graph. 19(12), 2634\u20132643 (2013)","journal-title":"IEEE Trans. Vis. Comput. Graph."},{"key":"1673_CR42","doi-asserted-by":"crossref","unstructured":"Senin, P., Lin, J., Wang, X., Oates, T., Gandhi, S., Boedihardjo, A.P., Chen, C., Frankenstein, S., Lerner, M.: Grammarviz 2.0: a tool for grammar-based pattern discovery in time series. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 468\u2013472 (2014)","DOI":"10.1007\/978-3-662-44845-8_37"},{"key":"1673_CR43","doi-asserted-by":"publisher","first-page":"47","DOI":"10.3354\/esr00084","volume":"10","author":"EL Shepard","year":"2008","unstructured":"Shepard, E.L., Wilson, R.P., Quintana, F., Laich, A.G., Liebsch, N., Albareda, D.A., Halsey, L.G., Gleiss, A., Morgan, D.T., Myers, A.E., et al.: Identification of animal movement patterns using tri-axial accelerometry. Endanger. Species Res. 10, 47\u201360 (2008)","journal-title":"Endanger. Species Res."},{"key":"1673_CR44","unstructured":"Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings 1996 IEEE Symposium on Visual Languages, pp. 336\u2013343 (1996)"},{"key":"1673_CR45","doi-asserted-by":"publisher","unstructured":"Singh, S., Zhang, S., Pruett, W.A., Hester, R.: Ensemble traces: interactive visualization of ensemble multivariate time series data. Electron. Imaging 1\u20139 (2016). \n https:\/\/doi.org\/10.2352\/ISSN.2470-1173.2016.1.VDA-505","DOI":"10.2352\/ISSN.2470-1173.2016.1.VDA-505"},{"issue":"8","key":"1673_CR46","doi-asserted-by":"publisher","first-page":"427","DOI":"10.1002\/cem.945","volume":"19","author":"A Singhal","year":"2005","unstructured":"Singhal, A., Seborg, D.E.: Clustering multivariate time-series data. J. Chemom. 19(8), 427\u2013438 (2005)","journal-title":"J. Chemom."},{"issue":"5","key":"1673_CR47","doi-asserted-by":"publisher","first-page":"621","DOI":"10.1097\/EDE.0b013e3181e5b06a","volume":"21","author":"BJ Swihart","year":"2010","unstructured":"Swihart, B.J., Caffo, B., James, B.D., Strand, M., Schwartz, B.S., Punjabi, N.M.: Lasagna plots: a saucy alternative to spaghetti plots. Epidemiology 21(5), 621\u20135 (2010)","journal-title":"Epidemiology"},{"issue":"1","key":"1673_CR48","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TVCG.2015.2468078","volume":"22","author":"S van den Elzen","year":"2016","unstructured":"van den Elzen, S., Holten, D., Blaas, J., van Wijk, J.J.: Reducing snapshots to points: a visual analytics approach to dynamic network exploration. IEEE Trans. Vis. Comput. Graph. 22(1), 1\u201310 (2016)","journal-title":"IEEE Trans. Vis. Comput. Graph."},{"key":"1673_CR49","first-page":"2579","volume":"9","author":"L van der Maaten","year":"2008","unstructured":"van der Maaten, L., Hinton, G.E.: Visualizing data using t-sne. J. Mach. Learn. Res. 9, 2579\u20132605 (2008)","journal-title":"J. Mach. Learn. Res."},{"issue":"1\u201341","key":"1673_CR50","first-page":"66","volume":"10","author":"L van der Maaten","year":"2009","unstructured":"van der Maaten, L., Postma, E.O., van den Herik, H.J.: Dimensionality reduction: a comparative review. J. Mach. Learn. Res. 10(1\u201341), 66\u201371 (2009)","journal-title":"J. Mach. Learn. Res."},{"issue":"5","key":"1673_CR51","doi-asserted-by":"publisher","first-page":"1227","DOI":"10.1016\/j.immuni.2016.04.014","volume":"44","author":"V van Unen","year":"2016","unstructured":"van Unen, V., Li, N., Molendijk, I., Temurhan, M., H\u00f6llt, T., van der Meulen-de Jong, A.E., Verspaget, H.W., Mearin, M.L., Mulder, C.J.J., van Bergen, J., Lelieveldt, B.P.F., Koning, F.: Mass cytometry of the human mucosal immune system identifies tissue- and disease-associated immune subsets. Immunity 44(5), 1227\u20131239 (2016)","journal-title":"Immunity"},{"issue":"1","key":"1673_CR52","doi-asserted-by":"publisher","first-page":"549","DOI":"10.1109\/TVCG.2015.2467751","volume":"22","author":"JS Walker","year":"2016","unstructured":"Walker, J.S., Borgo, R., Jones, M.W.: Timenotes: a study on effective chart visualization and interaction techniques for time-series data. IEEE Trans. Vis. Comput. Graph. 22(1), 549\u2013558 (2016)","journal-title":"IEEE Trans. Vis. Comput. Graph."},{"issue":"6\u20138","key":"1673_CR53","doi-asserted-by":"publisher","first-page":"1067","DOI":"10.1007\/s00371-015-1112-0","volume":"31","author":"JS Walker","year":"2015","unstructured":"Walker, J.S., Jones, M.W., Laramee, R.S., Bidder, O.R., Williams, H.J., Scott, R., Shepard, E.L.C., Wilson, R.P.: Timeclassifier: a visual analytic system for the classification of multi-dimensional time series data. Vis. Comput. 31(6\u20138), 1067\u20131078 (2015)","journal-title":"Vis. Comput."},{"key":"1673_CR54","doi-asserted-by":"publisher","first-page":"29","DOI":"10.1186\/s40462-015-0056-3","volume":"3","author":"JS Walker","year":"2015","unstructured":"Walker, J.S., Jones, M.W., Laramee, R.S., Holton, M.D., Shepard, E.L.C., Williams, H.J., Scantlebury, D.M., Marks, N.J., Magowan, E.A., Maguire, I.E., Bidder, O.R., Virgilio, A.D., Wilson, R.P.: Prying into the intimate secrets of animal lives; software beyond hardware for comprehensive annotation in daily diary tags. Mov. Ecol. 3, 29 (2015)","journal-title":"Mov. Ecol."},{"key":"1673_CR55","unstructured":"Whited, L., Graham, D.: Abnormal respirations (2018). \n https:\/\/www.ncbi.nlm.nih.gov\/books\/NBK470309\/\n \n . Accessed 9 Feb 2019"},{"key":"1673_CR56","doi-asserted-by":"crossref","unstructured":"Wilson, W., Birkin, P., Aickelin, U.: Motif detection inspired by immune memory. In: Artificial Immune Systems, pp. 276\u2013287 (2007)","DOI":"10.1007\/978-3-540-73922-7_24"},{"issue":"1","key":"1673_CR57","doi-asserted-by":"publisher","first-page":"32","DOI":"10.1007\/s11633-008-0032-0","volume":"5","author":"W Wilson","year":"2008","unstructured":"Wilson, W., Birkin, P., Aickelin, U.: The motif tracking algorithm. Int. J. Autom. Comput. 5(1), 32\u201344 (2008)","journal-title":"Int. J. Autom. Comput."},{"issue":"1","key":"1673_CR58","doi-asserted-by":"publisher","first-page":"215","DOI":"10.1109\/TVCG.2018.2865026","volume":"25","author":"C Xie","year":"2019","unstructured":"Xie, C., Xu, W., Mueller, K.: A visual analytics framework for the detection of anomalous call stack trees in high performance computing applications. IEEE Trans. Vis. Comput. Graph. 25(1), 215\u2013224 (2019)","journal-title":"IEEE Trans. Vis. Comput. Graph."},{"key":"1673_CR59","doi-asserted-by":"crossref","unstructured":"Yang, K., Shahabi, C.: A PCA-based similarity measure for multivariate time series. In: Proceedings of the 2nd ACM International Workshop on Multimedia Databases, pp. 65\u201374 (2004)","DOI":"10.1145\/1032604.1032616"},{"key":"1673_CR60","unstructured":"Yang, K., Shahabi, C.: On the stationarity of multivariate time series for correlation-based data analysis. In: 5th IEEE International Conference on Data Mining (ICDM\u201905), pp. 805\u2013808 (2005)"},{"key":"1673_CR61","first-page":"23","volume":"10","author":"G Yuan","year":"2013","unstructured":"Yuan, G., Drost, N.A., McIvor, R.A.: Respiratory rate and breathing pattern. McMaster Univ. Med. J. 10, 23\u201325 (2013)","journal-title":"McMaster Univ. Med. J."}],"container-title":["The Visual Computer"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s00371-019-01673-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s00371-019-01673-y\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s00371-019-01673-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,5,7]],"date-time":"2020-05-07T23:12:26Z","timestamp":1588893146000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s00371-019-01673-y"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,5,9]]},"references-count":61,"journal-issue":{"issue":"6-8","published-print":{"date-parts":[[2019,6]]}},"alternative-id":["1673"],"URL":"https:\/\/doi.org\/10.1007\/s00371-019-01673-y","relation":{},"ISSN":["0178-2789","1432-2315"],"issn-type":[{"value":"0178-2789","type":"print"},{"value":"1432-2315","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,5,9]]},"assertion":[{"value":"9 May 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Compliance with ethical standards"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of Interest"}}]}}