{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,13]],"date-time":"2024-08-13T07:09:52Z","timestamp":1723532992728},"reference-count":27,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2020,1,10]],"date-time":"2020-01-10T00:00:00Z","timestamp":1578614400000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,10]],"date-time":"2020-01-10T00:00:00Z","timestamp":1578614400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Classif"],"published-print":{"date-parts":[[2020,10]]},"DOI":"10.1007\/s00357-019-09349-x","type":"journal-article","created":{"date-parts":[[2020,1,10]],"date-time":"2020-01-10T23:02:36Z","timestamp":1578697356000},"page":"789-809","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["A Note on the Formal Implementation of the K-means Algorithm with Hard Positive and Negative Constraints"],"prefix":"10.1007","volume":"37","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1502-9706","authenticated-orcid":false,"given":"Igor","family":"Melnykov","sequence":"first","affiliation":[]},{"given":"Volodymyr","family":"Melnykov","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,1,10]]},"reference":[{"key":"9349_CR1","doi-asserted-by":"publisher","first-page":"257","DOI":"10.1007\/s10588-012-9121-2","volume":"18","author":"G Barbier","year":"2012","unstructured":"Barbier, G., Zafarani, R., Gao, H., Fung, G., Liu, H. (2012). Maximizing benefits from crowdsourced data. Computational and Mathematical Organization Theory, 18, 257\u2013279.","journal-title":"Computational and Mathematical Organization Theory"},{"key":"9349_CR2","unstructured":"Basu, S., Banerjee, A., Mooney, R. (2002). Semi-supervised clustering by seeding. In Proceedings of the 19th international conference on machine learning (pp. 19\u201326)."},{"key":"9349_CR3","doi-asserted-by":"crossref","unstructured":"Basu, S., Banerjee, A., Mooney, R. (2004). Active semi-supervision for pairwise constrained clustering. In Proceedings of the SIAM international conference on data mining.","DOI":"10.1137\/1.9781611972740.31"},{"key":"9349_CR4","doi-asserted-by":"publisher","DOI":"10.1201\/9781584889977","volume-title":"Constrained clustering: advances in algorithms, theory, and applications","author":"S Basu","year":"2008","unstructured":"Basu, S., Davidson, I., Wagstaff, K. (2008). Constrained clustering: advances in algorithms, theory, and applications. Boca Raton: CRC Press."},{"key":"9349_CR5","doi-asserted-by":"crossref","unstructured":"Bilenko, M., & Mooney, J.R. (2003). Adaptive duplicate detection using learnable string similarity measures. In International conference on knowledge discovery and data mining (pp. 39\u201348).","DOI":"10.1145\/956750.956759"},{"key":"9349_CR6","doi-asserted-by":"publisher","first-page":"127","DOI":"10.1080\/00949659308811525","volume":"47","author":"G Celeux","year":"1993","unstructured":"Celeux, G., & Govaert, G. (1993). Comparison of the mixture and the classification maximum likelihood in cluster analysis. Journal of Statistical Computation and Simulation, 47, 127\u2013146.","journal-title":"Journal of Statistical Computation and Simulation"},{"key":"9349_CR7","doi-asserted-by":"publisher","first-page":"485","DOI":"10.3233\/IDA-130590","volume":"17","author":"TF Cov\u00f5es","year":"2013","unstructured":"Cov\u00f5es, T.F., Hruschka, E.R., Ghosh, J. (2013). A study of k-means-based algorithms for constrained clustering. Intelligent Data Analysis, 17, 485\u2013505.","journal-title":"Intelligent Data Analysis"},{"key":"9349_CR8","unstructured":"Davidson, I., & Ravi, S. (2005). Clustering with constraints: feasibility issues and the k-means algorithm. In Proceedings of the 2005 SIAM international conference on data mining (pp. 138\u2013149): SIAM."},{"key":"9349_CR9","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1111\/j.2517-6161.1977.tb01600.x","volume":"39","author":"AP Dempster","year":"1977","unstructured":"Dempster, A.P., Laird, N.M., Rubin, D.B. (1977). Maximum likelihood for incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B, 39, 1\u201338.","journal-title":"Journal of the Royal Statistical Society, Series B"},{"key":"9349_CR10","doi-asserted-by":"publisher","first-page":"187","DOI":"10.1007\/BF02294172","volume":"49","author":"WS DeSarbo","year":"1984","unstructured":"DeSarbo, W.S., & Mahajan, V. (1984). Constrained classification: the use of a priori information in cluster analysis. Psychometrika, 49, 187\u2013215.","journal-title":"Psychometrika"},{"key":"9349_CR11","unstructured":"Dinler, D., & Tural, M.K. (2016). A survey of constrained clustering. In Unsupervised learning algorithms (pp. 207\u2013235): Springer."},{"key":"9349_CR12","first-page":"273","volume":"1","author":"K Fatehi","year":"2014","unstructured":"Fatehi, K., Bozorgi, A., Zahedi, M.S., Asgarian, E. (2014). Improving semi-supervised constrained k-means clustering method using user feedback. Journal of Computing and Security, 1, 273\u2013261.","journal-title":"Journal of Computing and Security"},{"key":"9349_CR13","unstructured":"Gu, L., & Lu, X. (2012). Semi-supervised subtractive clustering by seeding. In 2012 9th international conference on fuzzy systems and knowledge discovery (pp. 738\u2013741): IEEE."},{"key":"9349_CR14","doi-asserted-by":"publisher","DOI":"10.1201\/b19706","volume-title":"Handbook of cluster analysis","author":"C Hennig","year":"2015","unstructured":"Hennig, C., Meila, M., Murtagh, F., Rocci, R. (2015). Handbook of cluster analysis. Boca Raton: CRC Press."},{"key":"9349_CR15","unstructured":"Liu, H., & Fu, Y. (2015). Clustering with partition level side information. In 2015 IEEE international conference on data mining (pp. 877\u2013882): IEEE."},{"key":"9349_CR16","doi-asserted-by":"publisher","first-page":"354","DOI":"10.1198\/jcgs.2009.08054","volume":"19","author":"R Maitra","year":"2010","unstructured":"Maitra, R., & Melnykov, V. (2010). Simulating data to study performance of finite mixture modeling and clustering algorithms. Journal of Computational and Graphical Statistics, 19, 354\u2013376.","journal-title":"Journal of Computational and Graphical Statistics"},{"key":"9349_CR17","doi-asserted-by":"publisher","DOI":"10.1002\/0471721182","volume-title":"Finite mixture models","author":"G McLachlan","year":"2000","unstructured":"McLachlan, G., & Peel, D. (2000). Finite mixture models. New York: Wiley."},{"key":"9349_CR18","doi-asserted-by":"publisher","first-page":"1","DOI":"10.18637\/jss.v051.i12","volume":"51","author":"V Melnykov","year":"2012","unstructured":"Melnykov, V., Chen, W.-C., Maitra, R. (2012). Mixsim: an R package for simulating data to study performance of clustering algorithms. Journal of Statistical Software, 51, 1\u201325.","journal-title":"Journal of Statistical Software"},{"key":"9349_CR19","doi-asserted-by":"publisher","first-page":"327","DOI":"10.1007\/s11634-015-0200-3","volume":"10","author":"V Melnykov","year":"2016","unstructured":"Melnykov, V., Melnykov, I., Michael, S. (2016). Semi-supervised model-based clustering with positive and negative constraints. Advances in data analysis and classification, 10, 327\u2013349.","journal-title":"Advances in data analysis and classification"},{"key":"9349_CR20","doi-asserted-by":"publisher","first-page":"39","DOI":"10.3398\/064.078.0106","volume":"78","author":"DWR Nimmo","year":"2018","unstructured":"Nimmo, D.W.R., Herrmann, S.J., Sublette, J.E., Melnykov, I.V., Helland, L.K., Romine, J.A., Carsella, J.S., Herrmann-Hoesing, L.M., Turner, J.A., Vanden Heuvel, B.D. (2018). Occurrence of Chironomid species (Diptera: Chironomidae) in the high Se-78 concentrations and high pH of Fountain Creek Watershed, Colorado, USA. Western North American Naturalist, 78, 39\u201364\u201326.","journal-title":"Western North American Naturalist"},{"key":"9349_CR21","doi-asserted-by":"publisher","first-page":"345","DOI":"10.1007\/s10618-009-0157-y","volume":"21","author":"C Ruiz","year":"2010","unstructured":"Ruiz, C., Spiliopoulou, M., Menasalvas, E. (2010). Density-based semi-supervised clustering. Data Mining and Knowledge Discovery, 21, 345\u2013370.","journal-title":"Data Mining and Knowledge Discovery"},{"key":"9349_CR22","doi-asserted-by":"publisher","first-page":"493","DOI":"10.1007\/s11634-016-0254-x","volume":"11","author":"M \u015amieja","year":"2017","unstructured":"\u015amieja, M., & Wiercioch, M. (2017). Constrained clustering with a complex cluster structure. Advances in Data Analysis and Classification, 11, 493\u2013518.","journal-title":"Advances in Data Analysis and Classification"},{"key":"9349_CR23","doi-asserted-by":"publisher","first-page":"63","DOI":"10.1037\/a0022673","volume":"16","author":"D Steinley","year":"2011","unstructured":"Steinley, D., & Brusco, M.J. (2011). Evaluating mixture modeling for clustering: recommendations and cautions. Psychological Methods, 16, 63.","journal-title":"Psychological Methods"},{"key":"9349_CR24","unstructured":"Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S. (2001). Constrained K-means clustering with background knowledge. In Proceedings of the eighteenth international conference on machine learning (ICML-2001) (pp. 577\u2013584)."},{"key":"9349_CR25","unstructured":"Wang, X., Wang, C., Shen, J. (2011). Semi\u2013supervised K-means clustering by optimizing initial cluster centers. In International conference on web information systems and mining (pp. 178\u2013187): Springer."},{"key":"9349_CR26","doi-asserted-by":"publisher","first-page":"701","DOI":"10.1109\/TKDE.2015.2499200","volume":"28","author":"Z Yu","year":"2015","unstructured":"Yu, Z., Luo, P., You, J., Wong, H.-S., Leung, H., Wu, S., Zhang, J., Han, G. (2015). Incremental semi-supervised clustering ensemble for high dimensional data clustering. IEEE Transactions on Knowledge and Data Engineering, 28, 701\u2013714.","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"9349_CR27","unstructured":"Zhigang, C., Xuan, L., Fan, Y. (2013). Constrained k-means with external information. In 2013 8th International conference on computer science & education (pp. 490\u2013493): IEEE."}],"container-title":["Journal of Classification"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s00357-019-09349-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s00357-019-09349-x\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s00357-019-09349-x.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,30]],"date-time":"2024-07-30T00:08:50Z","timestamp":1722298130000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s00357-019-09349-x"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,1,10]]},"references-count":27,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2020,10]]}},"alternative-id":["9349"],"URL":"https:\/\/doi.org\/10.1007\/s00357-019-09349-x","relation":{},"ISSN":["0176-4268","1432-1343"],"issn-type":[{"type":"print","value":"0176-4268"},{"type":"electronic","value":"1432-1343"}],"subject":[],"published":{"date-parts":[[2020,1,10]]},"assertion":[{"value":"10 January 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}