{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,20]],"date-time":"2024-08-20T09:10:20Z","timestamp":1724145020120},"reference-count":49,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2019,7,11]],"date-time":"2019-07-11T00:00:00Z","timestamp":1562803200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,7,11]],"date-time":"2019-07-11T00:00:00Z","timestamp":1562803200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"name":"Brain Korea PLUS"},{"name":"Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning","award":["NRF-2016R1A2B1008994"]},{"name":"Ministry of Trade, Industry & Energy under Industrial Technology Innovation Program","award":["R1623371"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Classif"],"published-print":{"date-parts":[[2020,7]]},"DOI":"10.1007\/s00357-019-09330-8","type":"journal-article","created":{"date-parts":[[2019,7,11]],"date-time":"2019-07-11T13:48:57Z","timestamp":1562852937000},"page":"462-489","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":10,"title":["An Ensemble Feature Ranking Algorithm for Clustering Analysis"],"prefix":"10.1007","volume":"37","author":[{"given":"Jaehong","family":"Yu","sequence":"first","affiliation":[]},{"given":"Hua","family":"Zhong","sequence":"additional","affiliation":[]},{"given":"Seoung Bum","family":"Kim","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,7,11]]},"reference":[{"issue":"2","key":"9330_CR1","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1007\/s00357-013-9139-2","volume":"31","author":"JL Andrews","year":"2014","unstructured":"Andrews, J. L., & Mcnicholas, P. D. (2014). Variable selection for clustering and classification. Journal of Classification, 31(2), 136\u2013153.","journal-title":"Journal of Classification"},{"issue":"1","key":"9330_CR2","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1016\/j.patcog.2012.07.021","volume":"46","author":"O Arbelaitz","year":"2013","unstructured":"Arbelaitz, O., Gurrutxaga, I., Muguerrza, J., P\u00e8rez, J. M., & Perona, I. (2013). An extensive comparative study of cluster validity indices. Pattern Recognition, 46(1), 243\u2013256.","journal-title":"Pattern Recognition"},{"key":"9330_CR3","unstructured":"Arthur, D., and Vassilvitskii, S. (2007). \u201ck-means++: the advantages of careful seeding\u201d, in Proceedings of the 18th annual ACM-SIAM symposium on discrete algorithms, 2007, pp. 1027\u20131035."},{"issue":"1","key":"9330_CR4","doi-asserted-by":"crossref","first-page":"160","DOI":"10.1109\/TPAMI.2007.1138","volume":"30","author":"HG Ayad","year":"2008","unstructured":"Ayad, H. G., & Kamel, M. S. (2008). Cumulative voting consensus method for partitions with variable number of clusters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(1), 160\u2013173.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"9330_CR5","unstructured":"Boutsidis, C., Drineas, P., and Mahoney, M.W. (2009), \u201cUnsupervised feature selection for the k-means clustering problem\u201d, in Proceedings of the Advances in Neural Information Processing Systems, pp. 153\u2013161."},{"issue":"1","key":"9330_CR6","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5\u201332.","journal-title":"Machine Learning"},{"issue":"1","key":"9330_CR7","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1080\/03610927408827101","volume":"3","author":"T Cali\u0144ski","year":"1974","unstructured":"Cali\u0144ski, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics-theory and Methods, 3(1), 1\u201327.","journal-title":"Communications in Statistics-theory and Methods"},{"issue":"1","key":"9330_CR8","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1007\/s00357-010-9049-5","volume":"27","author":"MMT Chiang","year":"2010","unstructured":"Chiang, M. M. T., & Mirkin, B. (2010). Intelligent choice of the number of clusters in k-means clustering: an experimental study with different cluster spreads. Journal of Classification, 27(1), 3\u201340.","journal-title":"Journal of Classification"},{"issue":"2","key":"9330_CR9","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1007\/s00357-016-9208-4","volume":"33","author":"RC de Amorim","year":"2016","unstructured":"de Amorim, R. C. (2016). A survey on feature weighting based k-means algorithms. Journal of Classification, 33(2), 210\u2013242.","journal-title":"Journal of Classification"},{"issue":"3","key":"9330_CR10","doi-asserted-by":"crossref","first-page":"1061","DOI":"10.1016\/j.patcog.2011.08.012","volume":"45","author":"RC de Amorim","year":"2012","unstructured":"de Amorim, R. C., & Mirkin, B. (2012). Minkowski metric, feature weighting and anomalous cluster initializing in k-means clustering. Pattern Recognition, 45(3), 1061\u20131075.","journal-title":"Pattern Recognition"},{"key":"9330_CR11","doi-asserted-by":"crossref","first-page":"343","DOI":"10.1016\/j.ins.2016.07.076","volume":"370","author":"RC de Amorim","year":"2016","unstructured":"de Amorim, R. C., Makarenkov, V., & Mirkin, B. (2016). A-Wardp\u03b2: Effective hierarchical clustering using the Minkowski metric and a fast k-means initialization. Information Sciences, 370, 343\u2013354.","journal-title":"Information Sciences"},{"key":"9330_CR12","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1016\/j.patcog.2017.02.001","volume":"67","author":"RC de Amorim","year":"2017","unstructured":"de Amorim, R. C., Shestakov, A., Mirkin, B., & Makarenkov, V. (2017). The Minkowski central partition as a pointer to a suitable distance exponent and consensus partitioning. Pattern Recognition, 67, 62\u201372.","journal-title":"Pattern Recognition"},{"key":"9330_CR13","first-page":"845","volume":"5","author":"JG Dy","year":"2004","unstructured":"Dy, J. G., & Brodley, C. E. (2004). Feature selection for unsupervised learning. Journal of Machine Learning Research, 5, 845\u2013889.","journal-title":"Journal of Machine Learning Research"},{"issue":"1\u20132","key":"9330_CR14","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1007\/s10994-013-5337-8","volume":"98","author":"H Elghazel","year":"2015","unstructured":"Elghazel, H., & Aussem, A. (2015). Unsupervised feature selection with ensemble learning. Machine Learning, 98(1\u20132), 157\u2013180.","journal-title":"Machine Learning"},{"issue":"6","key":"9330_CR15","doi-asserted-by":"crossref","first-page":"835","DOI":"10.1109\/TPAMI.2005.113","volume":"27","author":"AL Fred","year":"2005","unstructured":"Fred, A. L., & Jain, A. K. (2005). Combining multiple clusterings using evidence accumulation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6), 835\u2013850.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"4","key":"9330_CR16","doi-asserted-by":"crossref","first-page":"703","DOI":"10.3233\/IDA-2012-0545","volume":"16","author":"L Guerra","year":"2012","unstructured":"Guerra, L., Robles, V., Bielza, C., & Larra\u00f1aga, P. (2012). A comparison of clustering quality indices using outliers and noise. Intelligent Data Analysis, 16(4), 703\u2013715.","journal-title":"Intelligent Data Analysis"},{"key":"9330_CR17","first-page":"1157","volume":"3","author":"I Guyon","year":"2003","unstructured":"Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157\u20131182.","journal-title":"Journal of Machine Learning Research"},{"issue":"3","key":"9330_CR18","doi-asserted-by":"crossref","first-page":"217","DOI":"10.5019\/j.ijcir.2006.64","volume":"2","author":"J Handl","year":"2006","unstructured":"Handl, J., & Knowles, J. (2006). Feature subset selection in unsupervised learning via multiobjective optimization. International Journal of Computational Intelligence Research, 2(3), 217\u2013238.","journal-title":"International Journal of Computational Intelligence Research"},{"issue":"1","key":"9330_CR19","first-page":"100","volume":"28","author":"JA Hartigan","year":"1979","unstructured":"Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society: Series C: Applied Statistics, 28(1), 100\u2013108.","journal-title":"Journal of the Royal Statistical Society: Series C: Applied Statistics"},{"key":"9330_CR20","unstructured":"HE, X., CAI, D., and NIYOGI, P. (2005), \u201cLaplacian score for feature selection\u201d, in Proceedings of the Advances in Neural Information Processing Systems, pp. 507\u2013514."},{"issue":"5","key":"9330_CR21","doi-asserted-by":"crossref","first-page":"655","DOI":"10.1093\/bioinformatics\/btg040","volume":"19","author":"J Herrero","year":"2003","unstructured":"Herrero, J., D\u00ecaz-uriarte, R., & Dopazo, J. (2003). Gene expression data preprocessing. Bioinformatics, 19(5), 655\u2013656.","journal-title":"Bioinformatics"},{"issue":"8","key":"9330_CR22","doi-asserted-by":"crossref","first-page":"832","DOI":"10.1109\/34.709601","volume":"20","author":"TK Ho","year":"1998","unstructured":"Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832\u2013844.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"5","key":"9330_CR23","doi-asserted-by":"crossref","first-page":"595","DOI":"10.1016\/j.patrec.2007.11.012","volume":"29","author":"Y Hong","year":"2008","unstructured":"Hong, Y., Kwong, S., Chang, Y., & Ren, Q. (2008a). Consensus unsupervised feature ranking from multiple views. Pattern Recognition Letters, 29(5), 595\u2013602.","journal-title":"Pattern Recognition Letters"},{"issue":"9","key":"9330_CR24","doi-asserted-by":"crossref","first-page":"2742","DOI":"10.1016\/j.patcog.2008.03.007","volume":"41","author":"Y Hong","year":"2008","unstructured":"Hong, Y., Kwong, S., Chang, Y., & Ren, Q. (2008b). Unsupervised feature selection using clustering ensembles and population based incremental learning algorithm. Pattern Recognition, 41(9), 2742\u20132756.","journal-title":"Pattern Recognition"},{"issue":"5","key":"9330_CR25","doi-asserted-by":"crossref","first-page":"657","DOI":"10.1109\/TPAMI.2005.95","volume":"27","author":"JZ Huang","year":"2005","unstructured":"Huang, J. Z., Ng, M. K., Rong, H., & LI, Z. (2005). Automated variable weighting in k-means type clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5), 657\u2013668.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"1","key":"9330_CR26","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1007\/BF01908075","volume":"2","author":"L Hubrert","year":"1985","unstructured":"Hubrert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193\u2013218.","journal-title":"Journal of Classification"},{"issue":"12","key":"9330_CR27","doi-asserted-by":"crossref","first-page":"2396","DOI":"10.1109\/TPAMI.2011.84","volume":"33","author":"N Iam-on","year":"2011","unstructured":"Iam-on, N., Boongoen, T., Garrett, S., & Price, C. (2011). A link-based approach to the cluster ensemble problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12), 2396\u20132409.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"9330_CR28","doi-asserted-by":"crossref","first-page":"441","DOI":"10.1002\/(SICI)1097-0266(199606)17:6<441::AID-SMJ819>3.0.CO;2-G","volume":"17","author":"DJ Ketchen Jr","year":"1996","unstructured":"Ketchen, D. J., Jr., & Shook, C. L. (1996). The application of cluster analysis in strategic management research: an analysis and critique. Strategic Management Journal, 17, 441\u2013458.","journal-title":"Strategic Management Journal"},{"issue":"5","key":"9330_CR29","doi-asserted-by":"crossref","first-page":"5704","DOI":"10.1016\/j.eswa.2010.10.063","volume":"38","author":"SB Kim","year":"2011","unstructured":"Kim, S. B., & Rattakorn, P. (2011). Unsupervised feature selection using weighted principal components. Expert Systems with Applications, 38(5), 5704\u20135710.","journal-title":"Expert Systems with Applications"},{"issue":"1","key":"9330_CR30","doi-asserted-by":"crossref","first-page":"260","DOI":"10.1186\/1471-2105-10-260","volume":"10","author":"EY Kim","year":"2009","unstructured":"Kim, E. Y., Kim, S. Y., Ashlock, D., & Nam, D. (2009). MULTI-K: Accurate classification of microarray subtypes using ensemble k-means clustering. BMC Bioinformatics, 10(1), 260.","journal-title":"BMC Bioinformatics"},{"issue":"11","key":"9330_CR31","doi-asserted-by":"crossref","first-page":"1798","DOI":"10.1109\/TPAMI.2006.226","volume":"28","author":"LI Kuncheva","year":"2006","unstructured":"Kuncheva, L. I., & Vetrov, D. P. (2006). Evaluation of stability of k-means cluster ensembles with respect to random initialization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(11), 1798\u20131808.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"10","key":"9330_CR32","doi-asserted-by":"crossref","first-page":"1067","DOI":"10.1016\/j.patrec.2005.12.018","volume":"27","author":"C Lai","year":"2006","unstructured":"Lai, C., Reinders, M. J., & Wessels, L. (2006). Random subspace method for multivariate feature selection. Pattern Recognition Letters, 27(10), 1067\u20131076.","journal-title":"Pattern Recognition Letters"},{"key":"9330_CR33","doi-asserted-by":"crossref","first-page":"690","DOI":"10.1016\/j.ins.2015.10.002","volume":"329","author":"F Li","year":"2016","unstructured":"Li, F., Zhang, Z., & Jin, C. (2016). Feature selection with partition differentiation entropy for large-scale data sets. Information Sciences, 329, 690\u2013700.","journal-title":"Information Sciences"},{"key":"9330_CR34","doi-asserted-by":"crossref","unstructured":"Liu, Y., Li, Z., Xiong, H., Gao, X., and Wu, J. (2010), \u201cUnderstanding of internal clustering validation measures\u201d, in Proceedings of IEEE 10th International Conference on Data Mining (ICDM), pp. 911\u2013916.","DOI":"10.1109\/ICDM.2010.35"},{"key":"9330_CR35","unstructured":"MacQueen, J. (1967), \u201cSome methods for classification and analysis of multivariate observations\u201d, in Proceedings of the 5th Berkeley symposium on mathematical statistics and probability, 1(14), pp. 281\u2013297."},{"issue":"2","key":"9330_CR36","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1007\/s00357-001-0018-x","volume":"18","author":"V Makarenkov","year":"2001","unstructured":"Makarenkov, V., & Legendre, P. (2001). Optimal variable weighting for ultrametric and additive trees and K-means partitioning: methods and software. Journal of Classification, 18(2), 245\u2013271.","journal-title":"Journal of Classification"},{"issue":"3","key":"9330_CR37","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1109\/34.990133","volume":"24","author":"P Mitra","year":"2002","unstructured":"Mitra, P., Murthy, C. A., & Pal, S. K. (2002). Unsupervised feature selection using feature similarity. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(3), 301\u2013312.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"8","key":"9330_CR38","doi-asserted-by":"crossref","first-page":"740","DOI":"10.1109\/TPDS.2006.112","volume":"17","author":"C Oehmen","year":"2006","unstructured":"Oehmen, C., & Nieplocha, J. (2006). ScalaBLAST: a scalable implementation of BLAST for high-performance data-intensive bioinformatics analysis. IEEE Transactions on Parallel and Distributed Systems, 17(8), 740\u2013749.","journal-title":"IEEE Transactions on Parallel and Distributed Systems"},{"key":"9330_CR39","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1016\/j.ipl.2017.09.005","volume":"129","author":"D Panday","year":"2018","unstructured":"Panday, D., de Amorim, R. C., & Lane, P. (2018). Feature weighting as a tool for unsupervised feature selection. Information Processing Letters, 129, 44\u201352.","journal-title":"Information Processing Letters"},{"key":"9330_CR40","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/0377-0427(87)90125-7","volume":"20","author":"PJ Rousseeuw","year":"1987","unstructured":"Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53\u201365.","journal-title":"Journal of Computational and Applied Mathematics"},{"issue":"1","key":"9330_CR41","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1007\/s00357-007-0003-0","volume":"24","author":"D Steinley","year":"2007","unstructured":"Steinley, D., & Brusco, M. J. (2007). Initializing k-means batch clustering: a critical evaluation of several techniques. Journal of Classification, 24(1), 99\u2013121.","journal-title":"Journal of Classification"},{"key":"9330_CR42","volume-title":"Introduction to data mining","author":"PN Tan","year":"2006","unstructured":"Tan, P. N., Steinbach, M., & Kumar, V. (2006). Introduction to data mining. Boston: Addison-Wesley."},{"issue":"4","key":"9330_CR43","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1002\/sam.10080","volume":"3","author":"L Vendramin","year":"2010","unstructured":"Vendramin, L., Campello, R. J., & Hruschka, E. R. (2010). Relative clustering validity criteria: a comparative overview. Statistical Analysis and Data Mining: the ASA Data Science Journal, 3(4), 209\u2013235.","journal-title":"Statistical Analysis and Data Mining: the ASA Data Science Journal"},{"key":"9330_CR44","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.ins.2014.12.003","volume":"299","author":"RF Xu","year":"2015","unstructured":"Xu, R. F., & Lee, S. J. (2015). Dimensionality reduction by feature clustering for regression problems. Information Sciences, 299, 42\u201357.","journal-title":"Information Sciences"},{"key":"9330_CR45","doi-asserted-by":"crossref","unstructured":"Yang, C., Wan, B., and Gao, X. (2006), \u201cEffectivity of Internal Validation Techniques for Gene Clustering\u201d, in Proceedings of International Symposium on Biological and Medical Data Analysis, pp. 49\u201359.","DOI":"10.1007\/11946465_5"},{"key":"9330_CR46","doi-asserted-by":"crossref","first-page":"473","DOI":"10.1016\/j.neucom.2015.10.085","volume":"175","author":"J Yu","year":"2016","unstructured":"Yu, J., & Kim, S. B. (2016). A density-based Noisy graph partitioning algorithm. Neurocomputing, 175, 473\u2013491.","journal-title":"Neurocomputing"},{"key":"9330_CR47","doi-asserted-by":"crossref","first-page":"692","DOI":"10.1016\/j.patcog.2016.06.017","volume":"60","author":"Z Yu","year":"2016","unstructured":"Yu, Z., Wang, D., You, J., Wong, H. S., Wu, S., Zhang, J., & Han, G. (2016). Progressive subspace ensemble learning. Pattern Recognition, 60, 692\u2013705.","journal-title":"Pattern Recognition"},{"issue":"4","key":"9330_CR48","doi-asserted-by":"crossref","first-page":"1257","DOI":"10.1109\/TCBB.2012.34","volume":"9","author":"S Zhang","year":"2012","unstructured":"Zhang, S., Wong, H. S., Shen, Y., & Xie, D. (2012). A new unsupervised feature ranking method for gene expression data based on consensus affinity. IEEE\/ACM Transactions on Computational Biology and Bioinformatics, 9(4), 1257\u20131263.","journal-title":"IEEE\/ACM Transactions on Computational Biology and Bioinformatics"},{"issue":"8","key":"9330_CR49","doi-asserted-by":"crossref","first-page":"2699","DOI":"10.1016\/j.patcog.2015.02.014","volume":"48","author":"C Zhong","year":"2015","unstructured":"Zhong, C., Yue, X., Zhang, Z., & Lei, J. (2015). A clustering ensemble: Two-level refined co-association matrix with path-based transformation. Pattern Recognition, 48(8), 2699\u20132709.","journal-title":"Pattern Recognition"}],"container-title":["Journal of Classification"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s00357-019-09330-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s00357-019-09330-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s00357-019-09330-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,1,11]],"date-time":"2021-01-11T19:45:30Z","timestamp":1610394330000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s00357-019-09330-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,7,11]]},"references-count":49,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2020,7]]}},"alternative-id":["9330"],"URL":"https:\/\/doi.org\/10.1007\/s00357-019-09330-8","relation":{},"ISSN":["0176-4268","1432-1343"],"issn-type":[{"value":"0176-4268","type":"print"},{"value":"1432-1343","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,7,11]]},"assertion":[{"value":"11 July 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}