{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,24]],"date-time":"2024-07-24T06:41:27Z","timestamp":1721803287688},"reference-count":70,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2022,11,19]],"date-time":"2022-11-19T00:00:00Z","timestamp":1668816000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,11,19]],"date-time":"2022-11-19T00:00:00Z","timestamp":1668816000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["New Gener. Comput."],"published-print":{"date-parts":[[2023,3]]},"DOI":"10.1007\/s00354-022-00194-y","type":"journal-article","created":{"date-parts":[[2022,11,19]],"date-time":"2022-11-19T17:03:57Z","timestamp":1668877437000},"page":"25-60","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":9,"title":["Variational Autoencoder Based Imbalanced COVID-19 Detection Using Chest X-Ray Images"],"prefix":"10.1007","volume":"41","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3930-4699","authenticated-orcid":false,"given":"Sankhadeep","family":"Chatterjee","sequence":"first","affiliation":[]},{"given":"Soumyajit","family":"Maity","sequence":"additional","affiliation":[]},{"given":"Mayukh","family":"Bhattacharjee","sequence":"additional","affiliation":[]},{"given":"Soumen","family":"Banerjee","sequence":"additional","affiliation":[]},{"given":"Asit Kumar","family":"Das","sequence":"additional","affiliation":[]},{"given":"Weiping","family":"Ding","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,11,19]]},"reference":[{"key":"194_CR1","doi-asserted-by":"publisher","DOI":"10.1016\/j.chaos.2020.110245","volume":"140","author":"C Ouchicha","year":"2020","unstructured":"Ouchicha, C., Ammor, O., Meknassi, M.: Cvdnet: a novel deep learning architecture for detection of coronavirus (covid-19) from chest x-ray images. Chaos, Solitons Fractals 140, 110245 (2020)","journal-title":"Chaos, Solitons Fractals"},{"key":"194_CR2","doi-asserted-by":"publisher","DOI":"10.1016\/j.pdpdt.2021.102473","volume":"35","author":"SH Khan","year":"2021","unstructured":"Khan, S.H., Sohail, A., Zafar, M.M., Khan, A.: Coronavirus disease analysis using chest x-ray images and a novel deep convolutional neural network. Photodiagn. Photodyn. Ther. 35, 102473 (2021)","journal-title":"Photodiagn. Photodyn. Ther."},{"key":"194_CR3","doi-asserted-by":"publisher","DOI":"10.1016\/j.imu.2020.100405","volume":"20","author":"KH Shibly","year":"2020","unstructured":"Shibly, K.H., Dey, S.K., Islam, M.T.-U., Rahman, M.M.: Covid faster r-cnn: a novel framework to diagnose novel coronavirus disease (covid-19) in x-ray images. Inf. Med. Unlocked 20, 100405 (2020)","journal-title":"Inf. Med. Unlocked"},{"key":"194_CR4","unstructured":"Worldometer. Covid-19 coronavirus pandemic, 2021. https:\/\/www.worldometers.info\/coronavirus\/. Accessed 18 Nov 2021"},{"key":"194_CR5","doi-asserted-by":"crossref","unstructured":"Ahmad, F., Farooq, A., Ghani, M.U.: Deep ensemble model for classification of novel coronavirus in chest x-ray images. Comput. Intell. Neurosci. 2021 (2021)","DOI":"10.1155\/2021\/8890226"},{"key":"194_CR6","doi-asserted-by":"publisher","first-page":"35","DOI":"10.1016\/j.clinimag.2020.04.001","volume":"64","author":"A Jacobi","year":"2020","unstructured":"Jacobi, A., Chung, M., Bernheim, A., Eber, C.: Portable chest x-ray in coronavirus disease-19 (covid-19): a pictorial review. Clin. Imaging 64, 35\u201342 (2020)","journal-title":"Clin. Imaging"},{"key":"194_CR7","doi-asserted-by":"crossref","unstructured":"Roy, M., Chakraborty, S., Mali, K., Banerjee, A., Ghosh, K., Chatterjee, S.: Biomedical image security using matrix manipulation and dna encryption. In: International Ethical Hacking Conference, pp. 49\u201360. Springer (2019)","DOI":"10.1007\/978-981-15-0361-0_4"},{"key":"194_CR8","doi-asserted-by":"crossref","unstructured":"Ding, W., Chakraborty, S., Mali, K., Chatterjee, S., Nayak, J., Das, A.K., Banerjee, S.: An unsupervised fuzzy clustering approach for early screening of covid-19 from radiological images. IEEE Trans. Fuzzy Syst. 30(8) (2021)","DOI":"10.1109\/TFUZZ.2021.3097806"},{"issue":"1","key":"194_CR9","doi-asserted-by":"publisher","first-page":"6","DOI":"10.3390\/computers10010006","volume":"10","author":"H Sallay","year":"2021","unstructured":"Sallay, H., Bourouis, S., Bouguila, N.: Online learning of finite and infinite gamma mixture models for covid-19 detection in medical images. Computers 10(1), 6 (2021)","journal-title":"Computers"},{"issue":"7553","key":"194_CR10","doi-asserted-by":"publisher","first-page":"436","DOI":"10.1038\/nature14539","volume":"521","author":"Y LeCun","year":"2015","unstructured":"LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436\u2013444 (2015)","journal-title":"Nature"},{"key":"194_CR11","doi-asserted-by":"publisher","first-page":"4","DOI":"10.1016\/j.compmedimag.2016.07.004","volume":"57","author":"W Sun","year":"2017","unstructured":"Sun, W., Tseng, T.-L.B., Zhang, J., Qian, W.: Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data. Comput. Med. Imaging Graph. 57, 4\u20139 (2017)","journal-title":"Comput. Med. Imaging Graph."},{"issue":"12","key":"194_CR12","doi-asserted-by":"publisher","first-page":"3813","DOI":"10.1109\/TMI.2020.3005297","volume":"39","author":"AJ Larrazabal","year":"2020","unstructured":"Larrazabal, A.J., Mart\u00ednez, C., Glocker, B., Ferrante, E.: Post-dae: anatomically plausible segmentation via post-processing with denoising autoencoders. IEEE Trans. Med. Imaging 39(12), 3813\u20133820 (2020)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"194_CR13","unstructured":"Singh, S.R., Dubey, S.R., Shruthi M.S., Ventrapragada, S., Dasharatha, S.S.: Joint triplet autoencoder for histopathological colon cancer nuclei retrieval. arXiv preprint arXiv:2105.10262 (2021)"},{"key":"194_CR14","doi-asserted-by":"crossref","unstructured":"Baur, C., Wiestler, B., Albarqouni, S., Navab, N.: Bayesian skip-autoencoders for unsupervised hyperintense anomaly detection in high resolution brain mri. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pages 1905\u20131909. IEEE, (2020)","DOI":"10.1109\/ISBI45749.2020.9098686"},{"issue":"9","key":"194_CR15","doi-asserted-by":"publisher","first-page":"1263","DOI":"10.1109\/TKDE.2008.239","volume":"21","author":"H He","year":"2009","unstructured":"He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263\u20131284 (2009)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"194_CR16","doi-asserted-by":"publisher","first-page":"13527","DOI":"10.1109\/ACCESS.2020.2966296","volume":"8","author":"B Pes","year":"2020","unstructured":"Pes, B.: Learning from high-dimensional biomedical datasets: the issue of class imbalance. IEEE Access 8, 13527\u201313540 (2020)","journal-title":"IEEE Access"},{"issue":"3","key":"194_CR17","doi-asserted-by":"publisher","first-page":"290","DOI":"10.1504\/IJBRA.2020.109103","volume":"16","author":"S Liu","year":"2020","unstructured":"Liu, S., Zhang, J., Xiang, Y., Zhou, W., Xiang, D.: A study of data pre-processing techniques for imbalanced biomedical data classification. Int. J. Bioinform. Res. Appl. 16(3), 290\u2013318 (2020)","journal-title":"Int. J. Bioinform. Res. Appl."},{"key":"194_CR18","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2020.114301","volume":"168","author":"A Guzm\u00e1n-Ponce","year":"2021","unstructured":"Guzm\u00e1n-Ponce, A., S\u00e1nchez, J.S., Valdovinos, R.M., Marcial-Romero, J.R.: Dbig-us: a two-stage under-sampling algorithm to face the class imbalance problem. Expert Syst. Appl. 168, 114301 (2021)","journal-title":"Expert Syst. Appl."},{"issue":"3","key":"194_CR19","doi-asserted-by":"publisher","first-page":"60","DOI":"10.4018\/IJDWM.2020070104","volume":"16","author":"D Devi","year":"2020","unstructured":"Devi, D., Namasudra, S., Kadry, S.: A boosting-aided adaptive cluster-based undersampling approach for treatment of class imbalance problem. Int. J. Data Warehous. Min. (IJDWM) 16(3), 60\u201386 (2020)","journal-title":"Int. J. Data Warehous. Min. (IJDWM)"},{"key":"194_CR20","doi-asserted-by":"crossref","unstructured":"Laurikkala, J.: Improving identification of difficult small classes by balancing class distribution. In: Conference on Artificial Intelligence in Medicine in Europe, pages 63\u201366. Springer (2001)","DOI":"10.1007\/3-540-48229-6_9"},{"key":"194_CR21","doi-asserted-by":"crossref","unstructured":"Junsomboon, N., Phienthrakul, T.: Combining over-sampling and under-sampling techniques for imbalance dataset. In: Proceedings of the 9th International Conference on Machine Learning and Computing, pp. 243\u2013247 (2017)","DOI":"10.1145\/3055635.3056643"},{"key":"194_CR22","doi-asserted-by":"crossref","unstructured":"Zhang, J., Chen, L., Abid, A.: Prediction of breast cancer from imbalance respect using cluster-based undersampling method. J Healthcare Eng 22 (2019)","DOI":"10.1155\/2019\/7294582"},{"key":"194_CR23","doi-asserted-by":"publisher","first-page":"321","DOI":"10.1613\/jair.953","volume":"16","author":"NV Chawla","year":"2002","unstructured":"Chawla, N.V., Bowyer, K.W., Hall, L.O., Philip Kegelmeyer, W.: Smote synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321\u2013357 (2002)","journal-title":"J. Artif. Intell. Res."},{"key":"194_CR24","doi-asserted-by":"publisher","first-page":"39707","DOI":"10.1109\/ACCESS.2021.3064084","volume":"9","author":"A Ishaq","year":"2021","unstructured":"Ishaq, A., Sadiq, S., Umer, M., Ullah, S., Mirjalili, S., Rupapara, V., Nappi, M.: Improving the prediction of heart failure patients\u2019 survival using smote and effective data mining techniques. IEEE Access 9, 39707\u201339716 (2021)","journal-title":"IEEE Access"},{"key":"194_CR25","doi-asserted-by":"publisher","first-page":"218","DOI":"10.1007\/978-3-031-10161-8_12","volume-title":"International Conference on Agents and Artificial Intelligence","author":"SK Venu","year":"2022","unstructured":"Venu, S.K..: Improving the generalization of deep learning classification models in medical imaging using transfer learning and generative adversarial networks. In: International Conference on Agents and Artificial Intelligence, pp. 218\u2013235. Springer, Cham (2022)"},{"issue":"5","key":"194_CR26","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10916-014-0050-0","volume":"38","author":"EM Karabulut","year":"2014","unstructured":"Karabulut, E.M., Ibrikci, T.: Effective automated prediction of vertebral column pathologies based on logistic model tree with smote preprocessing. J. Med. Syst. 38(5), 1\u20139 (2014)","journal-title":"J. Med. Syst."},{"key":"194_CR27","doi-asserted-by":"publisher","first-page":"66","DOI":"10.4018\/978-1-7998-7371-6.ch004","volume-title":"Data Preprocessing, Active Learning, and Cost Perceptive Approaches for Resolving Data Imbalance","author":"D Banik","year":"2021","unstructured":"Banik, D., Bhattacharjee, D.: Mitigating data imbalance issues in medical image analysis. In: Rana, D.P., Mehta, R.G. (eds.) Data Preprocessing, Active Learning, and Cost Perceptive Approaches for Resolving Data Imbalance, pp. 66\u201389. IGI Global (2021)"},{"issue":"2","key":"194_CR28","doi-asserted-by":"publisher","first-page":"63","DOI":"10.1016\/j.cmpb.2015.03.003","volume":"119","author":"K-J Wang","year":"2015","unstructured":"Wang, K.-J., Adrian, A.M., Chen, K.-H., Wang, K.-M.: A hybrid classifier combining borderline-smote with airs algorithm for estimating brain metastasis from lung cancer: A case study in taiwan. Comput. Methods Progr. Biomed. 119(2), 63\u201376 (2015)","journal-title":"Comput. Methods Progr. Biomed."},{"issue":"1","key":"194_CR29","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s40644-020-00359-2","volume":"20","author":"R Guo","year":"2020","unstructured":"Guo, R., Guo, J., Zhang, L., Xiaoxia, Q., Dai, S., Peng, R., Chong, V.F.H., Xian, J.: Ct-based radiomics features in the prediction of thyroid cartilage invasion from laryngeal and hypopharyngeal squamous cell carcinoma. Cancer Imaging 20(1), 1\u201311 (2020)","journal-title":"Cancer Imaging"},{"issue":"5","key":"194_CR30","first-page":"1448","volume":"25","author":"M Shyamala Devi","year":"2021","unstructured":"Shyamala Devi, M., Sridevi, S., Bonala, K.K., Dadi, R.H., Reddy, K.V.R.: Oversampling response stretch based fetal health prediction using cardiotocographic data. Ann. Rom. Soc. Cell Biol. 25(5), 1448\u20131464 (2021)","journal-title":"Ann. Rom. Soc. Cell Biol."},{"issue":"10","key":"194_CR31","doi-asserted-by":"publisher","DOI":"10.23915\/distill.00002","volume":"1","author":"M Wattenberg","year":"2016","unstructured":"Wattenberg, M., Vi\u00e9gas, F., Johnson, I.: How to use t-sne effectively. Distill 1(10), e2 (2016)","journal-title":"Distill"},{"key":"194_CR32","doi-asserted-by":"publisher","DOI":"10.1561\/9781601982957","volume-title":"Learning Deep Architectures for AI","author":"Y Bengio","year":"2009","unstructured":"Bengio, Y.: Learning Deep Architectures for AI. Now Publishers Inc, Delft (2009)"},{"key":"194_CR33","unstructured":"Bank, D., Koenigstein,, N., Giryes, R.: Autoencoders. arXiv preprint arXiv:2003.05991 (2020)"},{"key":"194_CR34","doi-asserted-by":"publisher","DOI":"10.4324\/9781410612403","volume-title":"The Organization of Behavior: A Neuropsychological Theory","author":"DO Hebb","year":"2005","unstructured":"Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Psychology Press, Hove (2005)"},{"issue":"8","key":"194_CR35","doi-asserted-by":"publisher","first-page":"1798","DOI":"10.1109\/TPAMI.2013.50","volume":"35","author":"Y Bengio","year":"2013","unstructured":"Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798\u20131828 (2013)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"194_CR36","doi-asserted-by":"crossref","unstructured":"Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Advances in Neural Information Processing Systems 19 (2006)","DOI":"10.7551\/mitpress\/7503.003.0024"},{"key":"194_CR37","unstructured":"Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)"},{"key":"194_CR38","unstructured":"Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: a recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462\u20131471. PMLR (2015)"},{"key":"194_CR39","unstructured":"Babaeizadeh, M., Finn, C., Erhan, D., Campbell, R.H., Levine, S.: Stochastic variational video prediction. arXiv preprint arXiv:1710.11252 (2017)"},{"key":"194_CR40","first-page":"3738","volume":"29","author":"CK S\u00f8nderby","year":"2016","unstructured":"S\u00f8nderby, C.K., Raiko, T., Maal\u00f8e, L., S\u00f8nderby, S.K., Winther, O.: Ladder variational autoencoders. Adv. Neural Inf. Process. Syst. 29, 3738\u20133746 (2016)","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"194_CR41","doi-asserted-by":"publisher","first-page":"277","DOI":"10.1093\/bib\/bbab277","volume":"26","author":"T-T-D Nguyen","year":"2021","unstructured":"Nguyen, T.-T.-D., Nguyen, D.-K., Yu-Yen, O.: Addressing data imbalance problems in ligand-binding site prediction using a variational autoencoder and a convolutional neural network. Brief. Bioinform. 26, 277 (2021)","journal-title":"Brief. Bioinform."},{"issue":"1","key":"194_CR42","first-page":"1","volume":"2","author":"J An","year":"2015","unstructured":"An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Sp. Lect. IE 2(1), 1\u201318 (2015)","journal-title":"Sp. Lect. IE"},{"key":"194_CR43","unstructured":"Paisley, J., Blei, D., Jordan, M.: Variational Bayesian inference with stochastic search. arXiv preprint arXiv:1206.6430 (2012)"},{"key":"194_CR44","doi-asserted-by":"publisher","first-page":"714","DOI":"10.1016\/j.asoc.2015.08.060","volume":"38","author":"B Krawczyk","year":"2016","unstructured":"Krawczyk, B., Galar, M., Jele\u0144, \u0141, Herrera, F.: Evolutionary undersampling boosting for imbalanced classification of breast cancer malignancy. Appl. Soft Comput. 38, 714\u2013726 (2016)","journal-title":"Appl. Soft Comput."},{"key":"194_CR45","doi-asserted-by":"crossref","unstructured":"Bhattacharjee, M., Ghosh, K., Banerjee, A., Chatterjee S.: Multilabel sentiment prediction by addressing imbalanced class problem using oversampling. In: Advances in Smart Communication Technology and Information Processing: OPTRONIX 2020, pp. 239\u2013249. Springer (2021)","DOI":"10.1007\/978-981-15-9433-5_23"},{"key":"194_CR46","doi-asserted-by":"crossref","unstructured":"Cavadas, B., Branco, P., Pereira, S.: Crime prediction using regression and resources optimization. In: Portuguese Conference on Artificial Intelligence, pp. 513\u2013524. Springer (2015)","DOI":"10.1007\/978-3-319-23485-4_51"},{"issue":"47","key":"194_CR47","doi-asserted-by":"publisher","first-page":"35995","DOI":"10.1007\/s11042-020-09138-4","volume":"79","author":"A Banerjee","year":"2020","unstructured":"Banerjee, A., Bhattacharjee, M., Ghosh, K., Chatterjee, S.: Synthetic minority oversampling in addressing imbalanced sarcasm detection in social media. Multimed. Tools Appl. 79(47), 35995\u201336031 (2020)","journal-title":"Multimed. Tools Appl."},{"issue":"2","key":"194_CR48","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2907070","volume":"49","author":"P Branco","year":"2016","unstructured":"Branco, P., Torgo, L., Ribeiro, R.P.: A survey of predictive modeling on imbalanced domains. ACM Comput. Surv. (CSUR) 49(2), 1\u201350 (2016)","journal-title":"ACM Comput. Surv. (CSUR)"},{"key":"194_CR49","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1016\/j.neucom.2018.04.088","volume":"343","author":"RFAB de Morais","year":"2019","unstructured":"de Morais, R.F.A.B., Vasconcelos, G.C.: Boosting the performance of over-sampling algorithms through under-sampling the minority class. Neurocomputing 343, 3\u201318 (2019)","journal-title":"Neurocomputing"},{"issue":"4","key":"194_CR50","doi-asserted-by":"publisher","first-page":"221","DOI":"10.1007\/s13748-016-0094-0","volume":"5","author":"B Krawczyk","year":"2016","unstructured":"Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Progress Artif. Intell. 5(4), 221\u2013232 (2016)","journal-title":"Progress Artif. Intell."},{"key":"194_CR51","doi-asserted-by":"publisher","first-page":"184","DOI":"10.1016\/j.ins.2014.08.051","volume":"291","author":"JA S\u00e1ez","year":"2015","unstructured":"S\u00e1ez, J.A., Luengo, J., Stefanowski, J., Herrera, F.: Smote-ipf: addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering. Inf. Sci. 291, 184\u2013203 (2015)","journal-title":"Inf. Sci."},{"key":"194_CR52","unstructured":"He, H., Bai, Y., Garcia, E.A., Li S.: Adasyn: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE world congress on computational intelligence), pp. 1322\u20131328. IEEE (2008)"},{"key":"194_CR53","doi-asserted-by":"crossref","unstructured":"Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-smote: a new over-sampling method in imbalanced data sets learning. In: International Conference on Intelligent Computing, pp. 878\u2013887. Springer (2005)","DOI":"10.1007\/11538059_91"},{"issue":"1","key":"194_CR54","doi-asserted-by":"publisher","first-page":"4","DOI":"10.1504\/IJKESDP.2011.039875","volume":"3","author":"HM Nguyen","year":"2011","unstructured":"Nguyen, H.M., Cooper, E.W., Kamei, K.: Borderline over-sampling for imbalanced data classification. Int. J. Knowl. Eng. Soft Data Paradig. 3(1), 4\u201321 (2011)","journal-title":"Int. J. Knowl. Eng. Soft Data Paradig."},{"key":"194_CR55","doi-asserted-by":"crossref","unstructured":"Seiffert, C., Khoshgoftaar, T.M., Van\u00a0Hulse, J., Napolitano, A.: Rusboost: improving classification performance when training data is skewed. In: 2008 19th International Conference on Pattern Recognition, pp. 1\u20134. IEEE (2008)","DOI":"10.1109\/ICPR.2008.4761297"},{"key":"194_CR56","unstructured":"Batista, G.E.A.P.A., Bazzan, A.L.C., Monard, M.C., et\u00a0al.: Balancing training data for automated annotation of keywords: a case study. In: WOB, pp. 10\u201318 (2003)"},{"issue":"1","key":"194_CR57","doi-asserted-by":"publisher","first-page":"20","DOI":"10.1145\/1007730.1007735","volume":"6","author":"GEAPA Batista","year":"2004","unstructured":"Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Expl. Newsl 6(1), 20\u201329 (2004)","journal-title":"ACM SIGKDD Expl. Newsl"},{"key":"194_CR58","doi-asserted-by":"crossref","unstructured":"Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 2537\u20132546 (2019)","DOI":"10.1109\/CVPR.2019.00264"},{"key":"194_CR59","unstructured":"Raikote, P.: Covid-19 image dataset, April 2020. https:\/\/www.kaggle.com\/pranavraikokte\/covid19-image-dataset. Accessed 18 Nov 2021"},{"issue":"2","key":"194_CR60","first-page":"281","volume":"13","author":"J Bergstra","year":"2012","unstructured":"Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(2), 281\u2013305 (2012)","journal-title":"J. Mach. Learn. Res."},{"key":"194_CR61","volume-title":"Mastering Machine Learning with Scikit-Learn","author":"G Hackeling","year":"2017","unstructured":"Hackeling, G.: Mastering Machine Learning with Scikit-Learn. Packt Publishing Ltd, Birmingham (2017)"},{"key":"194_CR62","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2021.107692","volume":"111","author":"S Calderon-Ramirez","year":"2021","unstructured":"Calderon-Ramirez, S., Yang, S., Moemeni, A., Elizondo, D., Colreavy-Donnelly, S., Chavarr\u00eda-Estrada, L.F., Molina-Cabello, M.A.: Correcting data imbalance for semi-supervised covid-19 detection using x-ray chest images. Appl. Soft Comput. 111, 107692 (2021)","journal-title":"Appl. Soft Comput."},{"key":"194_CR63","volume":"3","author":"Venkata Pavan Kumar Turlapati and Manas Ranjan Prusty","year":"2020","unstructured":"Venkata Pavan Kumar Turlapati and Manas Ranjan Prusty: Outlier-smote: a refined oversampling technique for improved detection of covid-19. Intell.-based Med. 3, 100023 (2020)","journal-title":"Intell.-based Med."},{"issue":"4","key":"194_CR64","doi-asserted-by":"publisher","first-page":"1399","DOI":"10.1007\/s13246-020-00952-6","volume":"43","author":"P Autee","year":"2020","unstructured":"Autee, P., Bagwe, S., Shah, V., Srivastava, K.: Stacknet-denvis: a multi-layer perceptron stacked ensembling approach for covid-19 detection using x-ray images. Phys. Eng. Sci. Med. 43(4), 1399\u20131414 (2020)","journal-title":"Phys. Eng. Sci. Med."},{"issue":"4","key":"194_CR65","doi-asserted-by":"publisher","first-page":"1480","DOI":"10.3390\/s21041480","volume":"21","author":"Md Mominul Ahsan","year":"2021","unstructured":"Mominul Ahsan, Md., Based, J.H., Kowalski, M., et al.: Covid-19 detection from chest x-ray images using feature fusion and deep learning. Sensors 21(4), 1480 (2021)","journal-title":"Sensors"},{"issue":"4","key":"194_CR66","doi-asserted-by":"publisher","first-page":"539","DOI":"10.3390\/ai1040032","volume":"1","author":"BN Narayanan","year":"2020","unstructured":"Narayanan, B.N., Hardie, R.C., Krishnaraja, V., Karam, C., Davuluru, V.S.P.: Transfer-to-transfer learning approach for computer aided detection of covid-19 in chest radiographs. AI 1(4), 539\u2013557 (2020)","journal-title":"AI"},{"issue":"3","key":"194_CR67","doi-asserted-by":"publisher","first-page":"444","DOI":"10.1093\/jamia\/ocaa280","volume":"28","author":"Z Qiao","year":"2021","unstructured":"Qiao, Z., Bae, A., Glass, L.M., Xiao, C., Sun, J.: Flannel (focal loss based neural network ensemble) for covid-19 detection. J. Am. Med. Inf. Assoc. 28(3), 444\u2013452 (2021)","journal-title":"J. Am. Med. Inf. Assoc."},{"key":"194_CR68","doi-asserted-by":"publisher","DOI":"10.1016\/j.bspc.2020.102365","volume":"64","author":"SR Nayak","year":"2021","unstructured":"Nayak, S.R., Nayak, D.R., Sinha, U., Arora, V., Pachori, R.B.: Application of deep learning techniques for detection of covid-19 cases using chest x-ray images: A comprehensive study. Biomed. Signal Process. Control 64, 102365 (2021)","journal-title":"Biomed. Signal Process. Control"},{"issue":"1","key":"194_CR69","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-019-56847-4","volume":"10","author":"L Wang","year":"2020","unstructured":"Wang, L., Lin, Z.Q., Wong, A.: Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images. Sci. Rep. 10(1), 1\u201312 (2020)","journal-title":"Sci. Rep."},{"key":"194_CR70","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2020.103792","volume":"121","author":"T Ozturk","year":"2020","unstructured":"Ozturk, T., Talo, M., Yildirim, E.A., Baloglu, U.B., Yildirim, O., Rajendra Acharya, U.: Automated detection of covid-19 cases using deep neural networks with x-ray images. Comput. Biol. Med. 121, 103792 (2020)","journal-title":"Comput. Biol. Med."}],"container-title":["New Generation Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00354-022-00194-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00354-022-00194-y\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00354-022-00194-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T12:25:42Z","timestamp":1701433542000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00354-022-00194-y"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11,19]]},"references-count":70,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2023,3]]}},"alternative-id":["194"],"URL":"https:\/\/doi.org\/10.1007\/s00354-022-00194-y","relation":{},"ISSN":["0288-3635","1882-7055"],"issn-type":[{"value":"0288-3635","type":"print"},{"value":"1882-7055","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,11,19]]},"assertion":[{"value":"3 December 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"16 October 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"19 November 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}