{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,29]],"date-time":"2024-07-29T17:11:56Z","timestamp":1722273116291},"reference-count":43,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2020,1,25]],"date-time":"2020-01-25T00:00:00Z","timestamp":1579910400000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,25]],"date-time":"2020-01-25T00:00:00Z","timestamp":1579910400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["11872107"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000001","name":"National Science Foundation","doi-asserted-by":"publisher","award":["DMS-0908995","DMS-1211454"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Nonlinear Sci"],"published-print":{"date-parts":[[2020,8]]},"DOI":"10.1007\/s00332-020-09611-2","type":"journal-article","created":{"date-parts":[[2020,1,25]],"date-time":"2020-01-25T08:02:41Z","timestamp":1579939361000},"page":"1381-1419","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":8,"title":["A Variational Integrator for the Chaplygin\u2013Timoshenko Sleigh"],"prefix":"10.1007","volume":"30","author":[{"given":"Zhipeng","family":"An","sequence":"first","affiliation":[]},{"given":"Shan","family":"Gao","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4919-7460","authenticated-orcid":false,"given":"Donghua","family":"Shi","sequence":"additional","affiliation":[]},{"given":"Dmitry V.","family":"Zenkov","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,1,25]]},"reference":[{"key":"9611_CR1","volume-title":"Nonlinear Problems of Elasticity, Applied Mathematical Sciences","author":"SS Antman","year":"2005","unstructured":"Antman, S.S.: Nonlinear Problems of Elasticity, Applied Mathematical Sciences, vol. 107, 2nd edn. Springer, New York (2005)","edition":"2"},{"key":"9611_CR2","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-48926-9","volume-title":"Mathematical Aspects of Classical and Celestial Mechanics","author":"VI Arnold","year":"2006","unstructured":"Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics, 3rd edn. Springer, Berlin (2006)","edition":"3"},{"key":"9611_CR3","unstructured":"Bain, M., Wu, B., Zenkov, D.V.: Midpoint Rule as Hamel\u2019s Integrator, unpublished (2017)"},{"key":"9611_CR4","unstructured":"Ball, K.R.: Structure Preserving Integrators and Hamel\u2019s Equations, Ph.D. thesis, North Carolina State University (2013)"},{"key":"9611_CR5","doi-asserted-by":"publisher","first-page":"477","DOI":"10.1007\/978-1-4939-2441-7_20","volume-title":"Geometry, Mechanics, and Dynamics: The Legacy of Jerry Marsden, Fields Institute Communications","author":"KR Ball","year":"2015","unstructured":"Ball, K.R., Zenkov, D.V.: Hamel\u2019s formalism and variational integrators. In: Chang, D.E., Holm, D.D., Patrick, G., Ratiu, T. (eds.) Geometry, Mechanics, and Dynamics: The Legacy of Jerry Marsden, Fields Institute Communications, vol. 73, pp. 477\u2013506. Springer, New York (2015)"},{"key":"9611_CR6","volume-title":"Theoretical Mechanics","author":"NG Chetaev","year":"1989","unstructured":"Chetaev, N.G.: Theoretical Mechanics. Springer, New York (1989)"},{"key":"9611_CR7","doi-asserted-by":"publisher","first-page":"1365","DOI":"10.1088\/0951-7715\/14\/5\/322","volume":"14","author":"J Cort\u00e9s","year":"2001","unstructured":"Cort\u00e9s, J., Mart\u00ednez, S.: Nonholonomic integrators. Nonlinearity 14, 1365\u20131392 (2001)","journal-title":"Nonlinearity"},{"key":"9611_CR8","doi-asserted-by":"publisher","first-page":"515","DOI":"10.3166\/ejc.10.515-521","volume":"10","author":"M de Le\u00f3n","year":"2004","unstructured":"de Le\u00f3n, M., Mart\u00edn de Diego, D., Santamar\u00eda-Merino, A.: Geometric numerical integration of nonholonomic systems and optimal control problems. Eur. J. Control 10, 515\u2013521 (2004)","journal-title":"Eur. J. Control"},{"key":"9611_CR9","doi-asserted-by":"publisher","first-page":"3492","DOI":"10.1016\/j.cnsns.2014.02.032","volume":"19","author":"F Demoures","year":"2014","unstructured":"Demoures, F., Gay-Balmaz, F., Kobilarov, M., Ratiu, T.S.: Multisymplectic Lie group variational integrator for a geometrically exact beam in $${\\mathbb{R}}^3$$. Commun. Nonlinear Sci. Numer. Simulat. 19, 3492\u20133512 (2014)","journal-title":"Commun. Nonlinear Sci. Numer. Simulat."},{"key":"9611_CR10","doi-asserted-by":"publisher","first-page":"73","DOI":"10.1007\/s00211-014-0659-4","volume":"130","author":"F Demoures","year":"2015","unstructured":"Demoures, F., Gay-Balmaz, F., Leyendecker, S., Ober-Bl\u00f6baum, S., Ratiu, T.S., Weinand, Y.: Discrete variational Lie group discretization of geometrically exact beam dynamics. Numerische Mathematiks 130, 73\u2013123 (2015)","journal-title":"Numerische Mathematiks"},{"key":"9611_CR11","first-page":"185","volume":"6","author":"L Euler","year":"1752","unstructured":"Euler, L.: Decouverte d\u2019un nouveau principe de Mecanique. M\u00e9moires de l\u2019acad\u00e9mie des sciences de Berlin 6, 185\u2013217 (1752)","journal-title":"M\u00e9moires de l\u2019acad\u00e9mie des sciences de Berlin"},{"key":"9611_CR12","first-page":"217","volume":"11","author":"L Euler","year":"1757","unstructured":"Euler, L.: Principes g\u00e9n\u00e9raux de l\u2019\u00e9tat d\u2019\u00e9quilibre des fluides. M\u00e9moires de l\u2019acad\u00e9mie des sciences de Berlin 11, 217\u2013273 (1757a)","journal-title":"M\u00e9moires de l\u2019acad\u00e9mie des sciences de Berlin"},{"key":"9611_CR13","first-page":"274","volume":"11","author":"L Euler","year":"1757","unstructured":"Euler, L.: Principes g\u00e9n\u00e9raux du mouvement des fluides. M\u00e9moires de l\u2019acad\u00e9mie des sciences de Berlin 11, 274\u2013315 (1757b)","journal-title":"M\u00e9moires de l\u2019acad\u00e9mie des sciences de Berlin"},{"key":"9611_CR14","doi-asserted-by":"publisher","first-page":"2211","DOI":"10.1088\/0951-7715\/18\/5\/017","volume":"18","author":"YN Fedorov","year":"2005","unstructured":"Fedorov, Y.N., Zenkov, D.V.: Discrete nonholonomic LL systems on Lie groups. Nonlinearity 18, 2211\u20132241 (2005a)","journal-title":"Nonlinearity"},{"key":"9611_CR15","first-page":"258","volume":"2005","author":"YN Fedorov","year":"2005","unstructured":"Fedorov, Y.N., Zenkov, D.V.: Dynamics of the discrete Chaplygin Sleigh. Discrete Contin Dyn. Syst. 2005, 258\u2013267 (2005b)","journal-title":"Discrete Contin Dyn. Syst."},{"key":"9611_CR16","first-page":"1","volume":"50","author":"G Hamel","year":"1904","unstructured":"Hamel, G.: Die Lagrange\u2013Eulersche Gleichungen der Mechanik. Z. Math. Phys. 50, 1\u201357 (1904)","journal-title":"Z. Math. Phys."},{"key":"9611_CR17","volume-title":"Die Prinzipien der Mechanik in neuem Zusammenhange dargestellt","author":"H Hertz","year":"1894","unstructured":"Hertz, H.: Die Prinzipien der Mechanik in neuem Zusammenhange dargestellt. Barth, Leipzig (1894)"},{"key":"9611_CR18","doi-asserted-by":"publisher","first-page":"221","DOI":"10.1007\/s00332-007-9012-8","volume":"18","author":"D Iglesias","year":"2008","unstructured":"Iglesias, D., Marrero, J.C., Mart\u00edn de Diego, D., Mart\u00ednez, E.: Discrete nonholonomic Lagrangian systems on Lie groupoids. J. Nonlinear Sci. 18, 221\u2013276 (2008)","journal-title":"J. Nonlinear Sci."},{"key":"9611_CR19","doi-asserted-by":"publisher","first-page":"30","DOI":"10.1016\/0021-8928(81)90006-X","volume":"45","author":"AV Karapetyan","year":"1981","unstructured":"Karapetyan, A.V.: On realizing nonholonomic constraints by viscous friction forces and celtic stones stability. J. Appl. Math. Mech. 45, 30\u201336 (1981)","journal-title":"J. Appl. Math. Mech."},{"key":"9611_CR20","first-page":"61","volume":"3","author":"M Kobilarov","year":"2010","unstructured":"Kobilarov, M., Marsden, J.E., Sukhatme, G.S.: Geometric discretization of nonholonomic systems with symmetries. Discrete Continu. Dyn. Syst. Ser. S 3, 61\u201384 (2010)","journal-title":"Discrete Continu. Dyn. Syst. Ser. S"},{"key":"9611_CR21","first-page":"735","volume":"28","author":"VV Kozlov","year":"1983","unstructured":"Kozlov, V.V.: Realization of nonintegrable constraints in calssical mechanics. Sov. Phys. Dokl. 28, 735\u2013737 (1983)","journal-title":"Sov. Phys. Dokl."},{"key":"9611_CR22","volume-title":"M\u00e9canique Analytique","author":"JL Lagrange","year":"1788","unstructured":"Lagrange, J.L.: M\u00e9canique Analytique. Chez la Veuve Desaint, Paris (1788)"},{"key":"9611_CR23","doi-asserted-by":"crossref","unstructured":"Leok, M.: Variational discretizations of gauge field theories using group-equivariant interpolation. Found. Comput. Math., to appear (2019)","DOI":"10.1007\/s10208-019-09420-4"},{"key":"9611_CR24","first-page":"259","volume-title":"Problems of Analytical Mechanics and Stability Theory. Collection of Papers Dedicated to the Memory of Academician Valentin V. Rumyantsev","author":"C Lynch","year":"2009","unstructured":"Lynch, C., Zenkov, D.: Stability of stationary motions of discrete-time nonholonomic systems. In: Kozlov, V.V., Vassilyev, S.N., Karapetyan, A.V., Krasovskiy, N.N., Tkhai, V.N., Chernousko, F.L. (eds.) Problems of Analytical Mechanics and Stability Theory. Collection of Papers Dedicated to the Memory of Academician Valentin V. Rumyantsev, pp. 259\u2013271. Fizmatlit, Moscow (2009). (Russian)"},{"key":"9611_CR25","doi-asserted-by":"publisher","DOI":"10.1007\/978-0-387-21792-5","volume-title":"Introduction to Mechanics and Symmetry, Texts in Applied Mathematics","author":"JE Marsden","year":"1999","unstructured":"Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, Texts in Applied Mathematics, vol. 17, 2nd edn. Springer, New York (1999)","edition":"2"},{"key":"9611_CR26","doi-asserted-by":"publisher","first-page":"553","DOI":"10.1017\/S0305004198002953","volume":"125","author":"JE Marsden","year":"1999","unstructured":"Marsden, J.E., Shkoller, S.: Multisymplectic geometry, covariant Hamiltonians and water waves. Math. Proc. Camb. Phil. Soc. 125, 553\u2013575 (1999)","journal-title":"Math. Proc. Camb. Phil. Soc."},{"key":"9611_CR27","doi-asserted-by":"publisher","first-page":"357","DOI":"10.1017\/S096249290100006X","volume":"10","author":"JE Marsden","year":"2001","unstructured":"Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numerica 10, 357\u2013514 (2001)","journal-title":"Acta Numerica"},{"key":"9611_CR28","doi-asserted-by":"publisher","first-page":"351","DOI":"10.1007\/s002200050505","volume":"199","author":"JE Marsden","year":"1998","unstructured":"Marsden, J.E., Patrick, G.W., Shkoller, S.: Multisymplectic geometry, variational integrators, and nonlinear PDEs. Commun. Math. Phys. 199, 351\u2013395 (1998)","journal-title":"Commun. Math. Phys."},{"key":"9611_CR29","doi-asserted-by":"publisher","first-page":"283","DOI":"10.1007\/s00332-005-0698-1","volume":"16","author":"R McLachlan","year":"2006","unstructured":"McLachlan, R., Perlmutter, M.: Integrators for nonholonomic mechanical systems. J. Nonlinear Sci. 16, 283\u2013328 (2006)","journal-title":"J. Nonlinear Sci."},{"key":"9611_CR30","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511812248","volume-title":"Numerical Solution of Partial Differential Equations","author":"KW Morton","year":"2005","unstructured":"Morton, K.W., Mayers, D.F.: Numerical Solution of Partial Differential Equations, 2nd edn. Cambridge University Press, Cambridge (2005)","edition":"2"},{"key":"9611_CR31","volume-title":"Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs","author":"JI Neimark","year":"1972","unstructured":"Neimark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs, vol. 33. AMS, Providence (1972)"},{"key":"9611_CR32","first-page":"369","volume":"132","author":"H Poincar\u00e9","year":"1901","unstructured":"Poincar\u00e9, H.: Sur une forme nouvelle des \u00e9quations de la m\u00e9canique. CR Acad. Sci. 132, 369\u2013371 (1901)","journal-title":"CR Acad. Sci."},{"key":"9611_CR33","doi-asserted-by":"publisher","first-page":"241","DOI":"10.1007\/s00332-016-9332-7","volume":"27","author":"D Shi","year":"2017","unstructured":"Shi, D., Berchenko-Kogan, Y., Zenkov, D.V., Bloch, A.M.: Hamel\u2019s formalism for infinite-dimensional mechanical systems. J. Nonlinear Sci. 27, 241\u2013283 (2017)","journal-title":"J. Nonlinear Sci."},{"key":"9611_CR34","doi-asserted-by":"publisher","unstructured":"Shi, D., Zenkov, D.V., Bloch, A.M.: Hamel\u2019s formalism for classical field theories. J Nonlinear. Sci. (2020). https:\/\/doi.org\/10.1007\/s00332-020-09609-w","DOI":"10.1007\/s00332-020-09609-w"},{"key":"9611_CR35","first-page":"79","volume":"49","author":"JC Simo","year":"1985","unstructured":"Simo, J.C.: A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49, 79\u2013116 (1985)","journal-title":"Comput. Methods Appl. Mech. Eng."},{"key":"9611_CR36","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1016\/0045-7825(86)90079-4","volume":"58","author":"JC Simo","year":"1986","unstructured":"Simo, J.C., Vu-Quoc, L.: A three-dimensional finite-strain rod model. Part II: computational aspects. Comput. Methods Appl. Mech. Eng. 58, 79\u2013116 (1986)","journal-title":"Comput. Methods Appl. Mech. Eng."},{"key":"9611_CR37","doi-asserted-by":"publisher","first-page":"437","DOI":"10.1007\/978-1-4939-2441-7_19","volume-title":"Geometry, Mechanics, and Dynamics: The Legacy of Jerry Marsden, Fields Institute Communications","author":"A Stern","year":"2015","unstructured":"Stern, A., Tong, Y., Desbrun, M., Marsden, J.E.: Geometric computational electrodynamics with variational integrators and discrete differential forms. In: Chang, D.E., Holm, D.D., Patrick, G., Ratiu, T. (eds.) Geometry, Mechanics, and Dynamics: The Legacy of Jerry Marsden, Fields Institute Communications, vol. 73, pp. 437\u2013475. Springer, New York (2015)"},{"key":"9611_CR38","volume-title":"Theoretical Mechanics","author":"GK Suslov","year":"1946","unstructured":"Suslov, G.K.: Theoretical Mechanics, 3rd edn. GITTL, Moscow-Leningrad (1946)","edition":"3"},{"key":"9611_CR39","volume-title":"Computational Electrodynamics. The Finite-Difference Time-Domain Method","author":"A Taflove","year":"2005","unstructured":"Taflove, A., Hagness, S.C.: Computational Electrodynamics. The Finite-Difference Time-Domain Method, 3rd edn. Artech House, Boston (2005)","edition":"3"},{"key":"9611_CR40","doi-asserted-by":"publisher","first-page":"3889","DOI":"10.1088\/1751-8113\/40\/14\/010","volume":"40","author":"J Vankerschaver","year":"2007","unstructured":"Vankerschaver, J.: A class of nonholonomic kinematic constraints in elasticity. J. Phys. A Math. Theor. 40, 3889\u20133913 (2007a)","journal-title":"J. Phys. A Math. Theor."},{"key":"9611_CR41","doi-asserted-by":"crossref","unstructured":"Vankerschaver, J.: Continuous and Discrete Aspects of Lagrangian Field Theories with Nonholonomic Constraints, Ph.D. thesis, Ghent University (2007b)","DOI":"10.1016\/j.geomphys.2006.05.006"},{"key":"9611_CR42","first-page":"692","volume":"52","author":"L Wang","year":"2016","unstructured":"Wang, L., An, Z., Shi, D.: Hamel\u2019s field variational integrator for geometrically exact beam. Acta Scientiarum Naturalium Universitatis Pekinensis 52, 692\u2013698 (2016). (Chinese)","journal-title":"Acta Scientiarum Naturalium Universitatis Pekinensis"},{"key":"9611_CR43","doi-asserted-by":"publisher","first-page":"302","DOI":"10.1109\/TAP.1966.1138693","volume":"14","author":"KS Yee","year":"1966","unstructured":"Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell\u2019s equations in isotropic media. IEEE Trans. Antennas Prop. 14, 302\u2013307 (1966)","journal-title":"IEEE Trans. Antennas Prop."}],"container-title":["Journal of Nonlinear Science"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s00332-020-09611-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s00332-020-09611-2\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s00332-020-09611-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,12]],"date-time":"2022-10-12T21:51:48Z","timestamp":1665611508000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s00332-020-09611-2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,1,25]]},"references-count":43,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2020,8]]}},"alternative-id":["9611"],"URL":"https:\/\/doi.org\/10.1007\/s00332-020-09611-2","relation":{},"ISSN":["0938-8974","1432-1467"],"issn-type":[{"value":"0938-8974","type":"print"},{"value":"1432-1467","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,1,25]]},"assertion":[{"value":"25 June 2019","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"14 January 2020","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"25 January 2020","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}