{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,3]],"date-time":"2024-05-03T17:19:07Z","timestamp":1714756747699},"reference-count":46,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2016,11,10]],"date-time":"2016-11-10T00:00:00Z","timestamp":1478736000000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100004963","name":"Seventh Framework Programme","doi-asserted-by":"publisher","award":["626111"],"id":[{"id":"10.13039\/501100004963","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Nonlinear Sci"],"published-print":{"date-parts":[[2017,4]]},"DOI":"10.1007\/s00332-016-9345-2","type":"journal-article","created":{"date-parts":[[2016,11,10]],"date-time":"2016-11-10T11:09:34Z","timestamp":1478776174000},"page":"605-626","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":21,"title":["Isotropy of Angular Frequencies and Weak Chimeras with Broken Symmetry"],"prefix":"10.1007","volume":"27","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5238-1146","authenticated-orcid":false,"given":"Christian","family":"Bick","sequence":"first","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2016,11,10]]},"reference":[{"issue":"17","key":"9345_CR1","doi-asserted-by":"crossref","first-page":"174102","DOI":"10.1103\/PhysRevLett.93.174102","volume":"93","author":"DM Abrams","year":"2004","unstructured":"Abrams, D.M., Strogatz, S.H.: Chimera states for coupled oscillators. Phys. Rev. Lett. 93(17), 174102 (2004)","journal-title":"Phys. Rev. Lett."},{"issue":"8","key":"9345_CR2","doi-asserted-by":"crossref","first-page":"084103","DOI":"10.1103\/PhysRevLett.101.084103","volume":"101","author":"DM Abrams","year":"2008","unstructured":"Abrams, D.M., Mirollo, R.E., Strogatz, S.H., Wiley, D.A.: Solvable model for chimera states of coupled oscillators. Phys. Rev. Lett. 101(8), 084103 (2008)","journal-title":"Phys. Rev. Lett."},{"issue":"1","key":"9345_CR3","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1103\/RevModPhys.77.137","volume":"77","author":"J Acebr\u00f3n","year":"2005","unstructured":"Acebr\u00f3n, J., Bonilla, L., Vicente, C.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77(1), 137\u2013185 (2005)","journal-title":"Rev. Mod. Phys."},{"issue":"03","key":"9345_CR4","doi-asserted-by":"crossref","first-page":"559","DOI":"10.1142\/S0218127406015167","volume":"16","author":"F Antoneli","year":"2006","unstructured":"Antoneli, F., Stewart, I.: Symmetry and synchrony in coupled cell networks 1: fixed-point spaces. Int. J. Bifurc. Chaos 16(03), 559\u2013577 (2006)","journal-title":"Int. J. Bifurc. Chaos"},{"issue":"5\u20136","key":"9345_CR5","doi-asserted-by":"crossref","first-page":"338","DOI":"10.1016\/0375-9601(95)00857-8","volume":"209","author":"P Ashwin","year":"1995","unstructured":"Ashwin, P.: Attractors stuck on to invariant subspaces. Phys. Lett. A 209(5\u20136), 338\u2013344 (1995)","journal-title":"Phys. Lett. A"},{"key":"9345_CR6","doi-asserted-by":"crossref","first-page":"013106","DOI":"10.1063\/1.4905197","volume":"25","author":"P Ashwin","year":"2015","unstructured":"Ashwin, P., Burylko, O.: Weak chimeras in minimal networks of coupled phase oscillators. Chaos 25, 013106 (2015)","journal-title":"Chaos"},{"issue":"1","key":"9345_CR7","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1016\/S0167-2789(96)00175-3","volume":"100","author":"P Ashwin","year":"1997","unstructured":"Ashwin, P., Nicol, M.: Detection of symmetry of attractors from observations I. Theory. Phys. D 100(1), 58\u201370 (1997)","journal-title":"Phys. D"},{"key":"9345_CR8","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1016\/j.physd.2016.02.009","volume":"325","author":"P Ashwin","year":"2016","unstructured":"Ashwin, P., Rodrigues, A.: Hopf normal form with S_N symmetry and reduction to systems of nonlinearly coupled phase oscillators. Phys. D 325, 14\u201324 (2016)","journal-title":"Phys. D"},{"issue":"1","key":"9345_CR9","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1007\/BF02429852","volume":"2","author":"P Ashwin","year":"1992","unstructured":"Ashwin, P., Swift, J.W.: The dynamics of n weakly coupled identical oscillators. J. Nonlinear Sci. 2(1), 69\u2013108 (1992)","journal-title":"J. Nonlinear Sci."},{"key":"9345_CR10","doi-asserted-by":"publisher","unstructured":"Ashwin, P., Bick, C., Burylko, O.: Identical phase oscillator networks: bifurcations, symmetry and reversibility for generalized coupling. Front. Appl. Math. Stat. (2016a). doi: 10.3389\/fams.2016.00007","DOI":"10.3389\/fams.2016.00007"},{"issue":"5","key":"9345_CR11","doi-asserted-by":"crossref","first-page":"054102","DOI":"10.1103\/PhysRevLett.96.054102","volume":"96","author":"P Ashwin","year":"2006","unstructured":"Ashwin, P., Burylko, O., Maistrenko, Y.L., Popovych, O.V.: Extreme sensitivity to detuning for globally coupled phase oscillators. Phys. Rev. Lett. 96(5), 054102 (2006b)","journal-title":"Phys. Rev. Lett."},{"issue":"1","key":"9345_CR12","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1186\/s13408-015-0033-6","volume":"6","author":"P Ashwin","year":"2016","unstructured":"Ashwin, P., Coombes, S., Nicks, R.: Mathematical frameworks for oscillatory network dynamics in neuroscience. J. Math. Neurosci. 6(1), 2 (2016c)","journal-title":"J. Math. Neurosci."},{"issue":"1\u20133","key":"9345_CR13","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1016\/0167-2789(93)90198-A","volume":"67","author":"E Barany","year":"1993","unstructured":"Barany, E., Dellnitz, M., Golubitsky, M.: Detecting the symmetry of attractors. Phys. D 67(1\u20133), 66\u201387 (1993)","journal-title":"Phys. D"},{"key":"9345_CR14","unstructured":"Bick, C.: Chaos and chaos control in network dynamical systems. Ph.D. Dissertation. Georg-August-Universit\u00e4t G\u00f6ttingen (2012)"},{"issue":"5","key":"9345_CR15","doi-asserted-by":"crossref","first-page":"1468","DOI":"10.1088\/0951-7715\/29\/5\/1468","volume":"29","author":"C Bick","year":"2016","unstructured":"Bick, C., Ashwin, P.: Chaotic weak chimeras and their persistence in coupled populations of phase oscillators. Nonlinearity 29(5), 1468\u20131486 (2016)","journal-title":"Nonlinearity"},{"issue":"24","key":"9345_CR16","doi-asserted-by":"crossref","first-page":"244101","DOI":"10.1103\/PhysRevLett.107.244101","volume":"107","author":"C Bick","year":"2011","unstructured":"Bick, C., Timme, M., Paulikat, D., Rathlev, D., Ashwin, P.: Chaos in symmetric phase oscillator networks. Phys. Rev. Lett. 107(24), 244101 (2011)","journal-title":"Phys. Rev. Lett."},{"issue":"9","key":"9345_CR17","doi-asserted-by":"crossref","first-page":"094814","DOI":"10.1063\/1.4958928","volume":"26","author":"C Bick","year":"2016","unstructured":"Bick, C., Ashwin, P., Rodrigues, A.: Chaos in generically coupled phase oscillator networks with nonpairwise interactions. Chaos 26(9), 094814 (2016)","journal-title":"Chaos"},{"issue":"3","key":"9345_CR18","doi-asserted-by":"crossref","first-page":"423","DOI":"10.1016\/0167-2789(88)90066-8","volume":"32","author":"P Chossat","year":"1988","unstructured":"Chossat, P., Golubitsky, M.: Symmetry-increasing bifurcation of chaotic attractors. Phys. D 32(3), 423\u2013436 (1988)","journal-title":"Phys. D"},{"key":"9345_CR19","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1007\/978-1-4612-0859-4_4","volume-title":"Trends and Perspectives in Applied Mathematics","author":"M Dellnitz","year":"1994","unstructured":"Dellnitz, M., Golubitsky, M., Nicol, M.: Symmetry of attractors and the Karhunen\u2013Lo\u00e8ve decomposition. In: Sirovich, L. (ed.) Trends and Perspectives in Applied Mathematics, pp. 73\u2013108. Springer, New York (1994). (Chapter\u00a04)"},{"issue":"2","key":"9345_CR20","doi-asserted-by":"crossref","first-page":"559","DOI":"10.1088\/0951-7715\/9\/2\/016","volume":"9","author":"B Dionne","year":"1996","unstructured":"Dionne, B., Golubitsky, M., Stewart, I.: Coupled cells with internal symmetry: I. Wreath products. Nonlinearity 9(2), 559\u2013574 (1996)","journal-title":"Nonlinearity"},{"issue":"4","key":"9345_CR21","doi-asserted-by":"crossref","first-page":"353","DOI":"10.1016\/0040-9383(82)90017-9","volume":"21","author":"D Fried","year":"1982","unstructured":"Fried, D.: The geometry of cross sections to flows. Topology 21(4), 353\u2013371 (1982)","journal-title":"Topology"},{"key":"9345_CR22","volume-title":"Dynamics and Symmetry, Volume\u00a03 of ICP Advanced Texts in Mathematics","author":"MJ Field","year":"2007","unstructured":"Field, M.J.: Dynamics and Symmetry, Volume\u00a03 of ICP Advanced Texts in Mathematics. Imperial College Press, London (2007)"},{"key":"9345_CR23","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-0348-8167-8","volume-title":"The Symmetry Perspective, Volume 200 of Progress in Mathematics","author":"M Golubitsky","year":"2002","unstructured":"Golubitsky, M., Stewart, I.: The Symmetry Perspective, Volume 200 of Progress in Mathematics. Birkh\u00e4user, Basel (2002)"},{"key":"9345_CR24","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4612-4574-2","volume-title":"Singularities and Groups in Bifurcation Theory","author":"M Golubitsky","year":"1988","unstructured":"Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, vol. II. Springer, New York (1988)"},{"issue":"3","key":"9345_CR25","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1007\/s00332-005-0696-3","volume":"16","author":"M Golubitsky","year":"2006","unstructured":"Golubitsky, M., Josic, K., Shea-Brown, E.: Winding numbers and average frequencies in phase oscillator networks. J. Nonlinear Sci. 16(3), 201\u2013231 (2006)","journal-title":"J. Nonlinear Sci."},{"issue":"1","key":"9345_CR26","doi-asserted-by":"crossref","first-page":"197","DOI":"10.3934\/dcds.2006.15.197","volume":"15","author":"O Jenkinson","year":"2006","unstructured":"Jenkinson, O.: Ergodic optimization. Discret. Contin. Dyn. Syst. 15(1), 197\u2013224 (2006)","journal-title":"Discret. Contin. Dyn. Syst."},{"key":"9345_CR27","doi-asserted-by":"crossref","DOI":"10.1017\/CBO9780511809187","volume-title":"Introduction to the Modern Theory of Dynamical Systems, Volume 54 of Encyclopedia of Mathematics and its Applications","author":"A Katok","year":"1995","unstructured":"Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems, Volume 54 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1995)"},{"issue":"4","key":"9345_CR28","first-page":"380","volume":"5","author":"Y Kuramoto","year":"2002","unstructured":"Kuramoto, Y., Battogtokh, D.: Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom. Complex Syst. 5(4), 380\u2013385 (2002)","journal-title":"Nonlinear Phenom. Complex Syst."},{"issue":"1","key":"9345_CR29","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1007\/BF00386369","volume":"123","author":"I Melbourne","year":"1993","unstructured":"Melbourne, I., Dellnitz, M., Golubitsky, M.: The structure of symmetric attractors. Arch. Ration. Mech. Anal. 123(1), 75\u201398 (1993)","journal-title":"Arch. Ration. Mech. Anal."},{"issue":"3","key":"9345_CR30","doi-asserted-by":"crossref","first-page":"490","DOI":"10.1112\/jlms\/s2-40.3.490","volume":"s2\u201340","author":"M Misiurewicz","year":"1989","unstructured":"Misiurewicz, M., Ziemian, K.: Rotation sets for maps of tori. J. Lond. Math. Soc. s2\u201340(3), 490\u2013506 (1989)","journal-title":"J. Lond. Math. Soc."},{"issue":"9","key":"9345_CR31","doi-asserted-by":"crossref","first-page":"2469","DOI":"10.1088\/0951-7715\/26\/9\/2469","volume":"26","author":"OE Omel\u2019chenko","year":"2013","unstructured":"Omel\u2019chenko, O.E.: Coherence-incoherence patterns in a ring of non-locally coupled phase oscillators. Nonlinearity 26(9), 2469\u20132498 (2013)","journal-title":"Nonlinearity"},{"key":"9345_CR32","unstructured":"Omel\u2019chenko, O.E.: Private communication (2015)"},{"issue":"6","key":"9345_CR33","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1103\/PhysRevE.81.065201","volume":"81","author":"OE Omel\u2019chenko","year":"2010","unstructured":"Omel\u2019chenko, O.E., Wolfrum, M., Maistrenko, Y.L.: Chimera states as chaotic spatiotemporal patterns. Phys. Rev. E 81(6), 3\u20136 (2010)","journal-title":"Phys. Rev. E"},{"issue":"2","key":"9345_CR34","doi-asserted-by":"crossref","first-page":"116","DOI":"10.1090\/S0002-9904-1952-09580-X","volume":"58","author":"JC Oxtoby","year":"1952","unstructured":"Oxtoby, J.C.: Ergodic sets. Bull. Am. Math. Soc. 58(2), 116\u2013137 (1952)","journal-title":"Bull. Am. Math. Soc."},{"issue":"3","key":"9345_CR35","doi-asserted-by":"crossref","first-page":"R67","DOI":"10.1088\/0951-7715\/28\/3\/R67","volume":"28","author":"MJ Panaggio","year":"2015","unstructured":"Panaggio, M.J., Abrams, D.M.: Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 28(3), R67\u2013R87 (2015)","journal-title":"Nonlinearity"},{"issue":"1","key":"9345_CR36","doi-asserted-by":"crossref","first-page":"012218","DOI":"10.1103\/PhysRevE.93.012218","volume":"93","author":"MJ Panaggio","year":"2016","unstructured":"Panaggio, M.J., Abrams, D.M., Ashwin, P., Laing, C.R.: Chimera states in networks of phase oscillators: the case of two small populations. Phys. Rev. E 93(1), 012218 (2016)","journal-title":"Phys. Rev. E"},{"key":"9345_CR37","doi-asserted-by":"crossref","DOI":"10.1007\/978-94-010-0217-2","volume-title":"Synchronization: A Universal Concept in Nonlinear Sciences","author":"A Pikovsky","year":"2003","unstructured":"Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2003)"},{"issue":"2","key":"9345_CR38","doi-asserted-by":"crossref","first-page":"270","DOI":"10.2307\/1969999","volume":"66","author":"S Schwartzman","year":"1957","unstructured":"Schwartzman, S.: Asymptotic cycles. Ann. Math. 66(2), 270\u2013284 (1957)","journal-title":"Ann. Math."},{"issue":"4","key":"9345_CR39","doi-asserted-by":"crossref","first-page":"042917","DOI":"10.1103\/PhysRevE.88.042917","volume":"88","author":"GC Sethia","year":"2013","unstructured":"Sethia, G.C., Sen, A., Johnston, G.L.: Amplitude-mediated chimera states. Phys. Rev. E 88(4), 042917 (2013)","journal-title":"Phys. Rev. E"},{"issue":"1\u20134","key":"9345_CR40","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/S0167-2789(00)00094-4","volume":"143","author":"SH Strogatz","year":"2000","unstructured":"Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys. D 143(1\u20134), 1\u201320 (2000)","journal-title":"Phys. D"},{"key":"9345_CR41","volume-title":"Sync: The Emerging Science of Spontaneous Order","author":"SH Strogatz","year":"2004","unstructured":"Strogatz, S.H.: Sync: The Emerging Science of Spontaneous Order. Penguin, Harmondsworth (2004)"},{"issue":"1\u20132","key":"9345_CR42","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1016\/0167-2789(95)00253-7","volume":"91","author":"V Tchistiakov","year":"1996","unstructured":"Tchistiakov, V.: Detecting symmetry breaking bifurcations in the system describing the dynamics of coupled arrays of Josephson junctions. Phys. D 91(1\u20132), 67\u201385 (1996)","journal-title":"Phys. D"},{"issue":"02","key":"9345_CR43","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1142\/S0218127495000284","volume":"05","author":"JA Walsh","year":"1995","unstructured":"Walsh, J.A.: Rotation vectors for toral maps and flows: a tutorial. Int. J. Bifurc. Chaos 05(02), 321\u2013348 (1995)","journal-title":"Int. J. Bifurc. Chaos"},{"issue":"1","key":"9345_CR44","doi-asserted-by":"crossref","first-page":"015201","DOI":"10.1103\/PhysRevE.84.015201","volume":"84","author":"M Wolfrum","year":"2011","unstructured":"Wolfrum, M., Omel\u2019chenko, O.E.: Chimera states are chaotic transients. Phys. Rev. E 84(1), 015201 (2011)","journal-title":"Phys. Rev. E"},{"issue":"5\/6","key":"9345_CR45","doi-asserted-by":"crossref","first-page":"733","DOI":"10.1023\/A:1019762724717","volume":"108","author":"L-S Young","year":"2002","unstructured":"Young, L.-S.: What are SRB measures, and which dynamical systems have them? J. Stat. Phys. 108(5\/6), 733\u2013754 (2002)","journal-title":"J. Stat. Phys."},{"issue":"15","key":"9345_CR46","doi-asserted-by":"crossref","first-page":"154101","DOI":"10.1103\/PhysRevLett.112.154101","volume":"112","author":"A Zakharova","year":"2014","unstructured":"Zakharova, A., Kapeller, M., Sch\u00f6ll, E.: Chimera death: symmetry breaking in dynamical networks. Phys. Rev. Lett. 112(15), 154101 (2014)","journal-title":"Phys. Rev. Lett."}],"container-title":["Journal of Nonlinear Science"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s00332-016-9345-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s00332-016-9345-2\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s00332-016-9345-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,9,15]],"date-time":"2019-09-15T12:47:25Z","timestamp":1568551645000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s00332-016-9345-2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,11,10]]},"references-count":46,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2017,4]]}},"alternative-id":["9345"],"URL":"https:\/\/doi.org\/10.1007\/s00332-016-9345-2","relation":{},"ISSN":["0938-8974","1432-1467"],"issn-type":[{"value":"0938-8974","type":"print"},{"value":"1432-1467","type":"electronic"}],"subject":[],"published":{"date-parts":[[2016,11,10]]}}}