{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T03:24:00Z","timestamp":1740108240532,"version":"3.37.3"},"reference-count":34,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2019,3,5]],"date-time":"2019-03-05T00:00:00Z","timestamp":1551744000000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Comput Stat"],"published-print":{"date-parts":[[2019,9]]},"DOI":"10.1007\/s00180-019-00877-z","type":"journal-article","created":{"date-parts":[[2019,3,5]],"date-time":"2019-03-05T18:23:55Z","timestamp":1551810235000},"page":"1337-1353","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Recursive estimation of multivariate hidden Markov model parameters"],"prefix":"10.1007","volume":"34","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-8249-0768","authenticated-orcid":false,"given":"J\u016brat\u0117","family":"Vai\u010diulyt\u0117","sequence":"first","affiliation":[]},{"given":"Leonidas","family":"Sakalauskas","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,3,5]]},"reference":[{"key":"877_CR1","doi-asserted-by":"crossref","unstructured":"Bietti A, Bach F, Cont A (2015) An online EM algorithm in hidden (semi-)Markov models for audio segmentatino and clustering. In: ICASSP 2015 - 40th IEEE international conference on acoustics, speech and signal processing","DOI":"10.1109\/ICASSP.2015.7178297"},{"key":"877_CR2","volume-title":"Pattern recognition and machine learning","author":"C Bishop","year":"2009","unstructured":"Bishop C (2009) Pattern recognition and machine learning. Springer, New York"},{"issue":"3","key":"877_CR3","doi-asserted-by":"publisher","first-page":"728","DOI":"10.1198\/jcgs.2011.09109","volume":"20","author":"O Capp\u00e9","year":"2011","unstructured":"Capp\u00e9 O (2011) Online EM algorithm for hidden Markov models. J Comput Gr Stat 20(3):728\u2013749","journal-title":"J Comput Gr Stat"},{"key":"877_CR4","unstructured":"Cappe O, Moulines E, Ryden T (2009) Inference in hidden Markov models. \n https:\/\/www.ime.usp.br\/ebp\/ebp13\/mainbras.pdf\n \n . Accessed 06 May 2018"},{"key":"877_CR5","doi-asserted-by":"crossref","unstructured":"Cheng T, Dixon S, Mauch M (2015) Improving piano note tracking by HMM smoothing. In: Conference: 2015 23rd European signal processing conference (EUSIPCO)","DOI":"10.1109\/EUSIPCO.2015.7362736"},{"issue":"6","key":"877_CR6","doi-asserted-by":"publisher","first-page":"3963","DOI":"10.1109\/TIT.2011.2132490","volume":"57","author":"G Cybenko","year":"2011","unstructured":"Cybenko G, Crespi V (2011) Learning hidden Markov models using nonnegative matrix factorization. IEEE Trans Inf Theory 57(6):3963\u20133970","journal-title":"IEEE Trans Inf Theory"},{"key":"877_CR7","volume-title":"Hidden Markov models: estimation and control","author":"RJ Elliott","year":"2008","unstructured":"Elliott RJ, Aggoun L, Moore JB (2008) Hidden Markov models: estimation and control. Springer, New York"},{"issue":"6","key":"877_CR8","doi-asserted-by":"publisher","first-page":"1518","DOI":"10.1109\/TIT.2002.1003838","volume":"48","author":"Y Ephraim","year":"2002","unstructured":"Ephraim Y, Merhav N (2002) Hidden Markov processes. IEEE Trans Inf Theory 48(6):1518\u20131569","journal-title":"IEEE Trans Inf Theory"},{"issue":"01","key":"877_CR9","doi-asserted-by":"publisher","first-page":"9","DOI":"10.1142\/S0218001401000836","volume":"15","author":"Z Ghahramani","year":"2001","unstructured":"Ghahramani Z (2001) An introduction to hidden Markov models and Bayesian networks. Int J Pattern Recognit Artif Intell 15(01):9\u201342","journal-title":"Int J Pattern Recognit Artif Intell"},{"issue":"2","key":"877_CR10","doi-asserted-by":"publisher","first-page":"161","DOI":"10.1109\/89.554778","volume":"5","author":"Q Huo","year":"1997","unstructured":"Huo Q, Lee C (1997) On-line adaptive learning of the continuous density hidden Markov model based on approximate recursive Bayes estimate. IEEE Trans Speech Audio Process 5(2):161\u2013172","journal-title":"IEEE Trans Speech Audio Process"},{"key":"877_CR11","doi-asserted-by":"publisher","first-page":"105","DOI":"10.1016\/j.ins.2012.02.017","volume":"197","author":"W Khreich","year":"2012","unstructured":"Khreich W, Granger E, Miri A, Sabourin R (2012) A survey of techniques for incremental learning of HMM parameters. Inf Sci 197:105\u2013130","journal-title":"Inf Sci"},{"key":"877_CR12","unstructured":"Kontorovich A, Nadler B, Weiss R (2013) On learning parametric-output HMMs. \n https:\/\/arxiv.org\/abs\/1302.6009"},{"issue":"8","key":"877_CR13","doi-asserted-by":"publisher","first-page":"2557","DOI":"10.1109\/78.229888","volume":"41","author":"V Krishnamurthy","year":"1993","unstructured":"Krishnamurthy V, Moore J (1993) On-line estimation of hidden Markov model parameters based on the Kullback--Leibler information measure. IEEE Trans Signal Process 41(8):2557\u20132573","journal-title":"IEEE Trans Signal Process"},{"key":"877_CR14","doi-asserted-by":"crossref","unstructured":"Lakshminarayanan B, Raich R (2010) Non-negative matrix factorization for parameter estimation in hidden Markov models. In: Proc IEEE Int Workshop Mach Learn Signal Process, pp 89\u201394","DOI":"10.1109\/MLSP.2010.5589231"},{"key":"877_CR15","unstructured":"LeGland F, Mevel L (1997) Recursive estimation in hidden Markov models. s.l., In: Proceedings of the 36th IEEE conference on decision and control"},{"key":"877_CR16","unstructured":"Leveque O (2011) Lecture notes on Markov chains. \n http:\/\/www.hamilton.ie\/ollie\/Downloads\/Mar1.pdf\n \n . Accessed 7 March 2018"},{"key":"877_CR17","unstructured":"Ma Y, Foti N, Fox E (2018) Stochastic gradient MCMC methods for hidden Markov models. \n http:\/\/proceedings.mlr.press\/v70\/ma17a.html\n \n . Accessed 17 May 2018"},{"issue":"3","key":"877_CR18","doi-asserted-by":"publisher","first-page":"2099","DOI":"10.1007\/s11277-017-5044-z","volume":"102","author":"G Manogaran","year":"2018","unstructured":"Manogaran G et al (2018) Machine learning based big data processing framework for cancer diagnosis using hidden Markov model and GM clustering. Wirel Personal Commun 102(3):2099\u20132116","journal-title":"Wirel Personal Commun"},{"issue":"28","key":"877_CR19","doi-asserted-by":"publisher","first-page":"897","DOI":"10.1016\/j.ifacol.2015.12.244","volume":"48","author":"R Mattila","year":"2015","unstructured":"Mattila R, Rojas C, Wahlberg B (2015) Evaluation of spectral learning for the identification of hidden Markov models. IFAC-PapersOnLine, Issue 48(28):897\u2013902","journal-title":"IFAC-PapersOnLine, Issue"},{"key":"877_CR20","doi-asserted-by":"publisher","unstructured":"Mattila R, Rojas C, Krishnamurthy V, Wahlberg B (2017a) Identification of hidden Markov models using spectral learning with likelihood maximization. In: 2017 IEEE 56th annual conference on decision and control (CDC), pp 5859\u20135864. \n https:\/\/doi.org\/10.1109\/cdc.2017.8264545","DOI":"10.1109\/cdc.2017.8264545"},{"key":"877_CR21","unstructured":"Mattila R, Rojas C, Krishnamurthy V, Wahlberg B (2017b) Inverse filtering for hidden Markov models. Adv Neural Inf Process Syst (NIPS\u201917), pp 4207\u20134216"},{"issue":"2","key":"877_CR22","doi-asserted-by":"publisher","first-page":"227","DOI":"10.1111\/j.1467-842X.2009.00543.x","volume":"51","author":"C McGrory","year":"2009","unstructured":"McGrory C, Titterington D (2009) Variational Bayesian analysis for hidden Markov models. Aust N Z J Stat 51(2):227\u2013244","journal-title":"Aust N Z J Stat"},{"issue":"7","key":"877_CR23","doi-asserted-by":"publisher","first-page":"1706","DOI":"10.1162\/neco.2008.10-06-351","volume":"20","author":"G Mongillo","year":"2008","unstructured":"Mongillo G, Deneve S (2008) Online learning with hidden Markov models. Neural Comput 20(7):1706\u20131716","journal-title":"Neural Comput"},{"issue":"4","key":"877_CR24","doi-asserted-by":"publisher","first-page":"049901","DOI":"10.1117\/1.2819119","volume":"16","author":"NM Nasrabadi","year":"2007","unstructured":"Nasrabadi NM (2007) Pattern recognition and machine learning. J Electron Imaging 16(4):049901","journal-title":"J Electron Imaging"},{"key":"877_CR25","unstructured":"Neal R, Hinton G (1991) A view of the EM algorithm that justifies incremental, sparse, and other variants. In: Learning in graphical models. MIT Press, Cambridge, p 355\u2013368"},{"issue":"2","key":"877_CR26","doi-asserted-by":"publisher","first-page":"257","DOI":"10.1109\/5.18626","volume":"77","author":"L Rabiner","year":"1989","unstructured":"Rabiner L (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257\u2013286","journal-title":"Proc IEEE"},{"key":"877_CR27","doi-asserted-by":"crossref","unstructured":"Rodrigues L, Pinto E (2017) HMM models and estimation algorithms for real-time predictive spectrum sensing and cognitive usage. \n http:\/\/www.sbrt.org.br\/sbrt2017\/anais\/1570361504.pdf\n \n . Accessed 17 May 2018","DOI":"10.14209\/sbrt.2017.170"},{"key":"877_CR28","unstructured":"Stamp M (2015) A revealing introduction to hidden Markov models. \n http:\/\/www.cs.sjsu.edu\/faculty\/stamp\/RUA\/HMM.pdf\n \n . Accessed 07 May 2018"},{"key":"877_CR29","doi-asserted-by":"crossref","unstructured":"Stenger B et al (2001) Topology free hidden markov models: application to background modeling. Vancouver, IEEE, pp 294\u2013301","DOI":"10.1109\/ICCV.2001.937532"},{"key":"877_CR30","doi-asserted-by":"crossref","unstructured":"Subakan Y, Traa J, Smaragdis P, Hsu D (2015) Method of moments learning for left-to-right hidden Markov models. In: 2015 IEEE workshop on applications of signal processing to audio and acoustics (WASPAA), pp 1\u20135","DOI":"10.1109\/WASPAA.2015.7336940"},{"issue":"12","key":"877_CR31","doi-asserted-by":"publisher","first-page":"6406","DOI":"10.1109\/TIT.2010.2081110","volume":"56","author":"V Tadic","year":"2010","unstructured":"Tadic V (2010) Analyticity, convergence, and convergence rate of recursive maximum-likelihood estimation in hidden Markov models. IEEE Trans Inf Theory 56(12):6406\u20136432","journal-title":"IEEE Trans Inf Theory"},{"key":"877_CR32","unstructured":"Tuga\u00e7 S, Efe M (2010) Hidden Markov Model based target detection. In: 2010 13th international conference on information fusion, pp 1\u20137"},{"key":"877_CR33","volume-title":"Advanced digital signal processing and noise reduction","author":"S Vaseghi","year":"2000","unstructured":"Vaseghi S (2000) Advanced digital signal processing and noise reduction. Wiley, Chichester"},{"key":"877_CR34","volume-title":"Hidden Markov models for time series: an introduction using R","author":"W Zucchini","year":"2016","unstructured":"Zucchini W, MacDonald IL, Langrock R (2016) Hidden Markov models for time series: an introduction using R. Chapman and Hall\/CRC, s.l."}],"container-title":["Computational Statistics"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s00180-019-00877-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s00180-019-00877-z\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s00180-019-00877-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,3,3]],"date-time":"2020-03-03T19:09:04Z","timestamp":1583262544000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s00180-019-00877-z"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,3,5]]},"references-count":34,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2019,9]]}},"alternative-id":["877"],"URL":"https:\/\/doi.org\/10.1007\/s00180-019-00877-z","relation":{},"ISSN":["0943-4062","1613-9658"],"issn-type":[{"type":"print","value":"0943-4062"},{"type":"electronic","value":"1613-9658"}],"subject":[],"published":{"date-parts":[[2019,3,5]]},"assertion":[{"value":"11 September 2018","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"23 February 2019","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"5 March 2019","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}