{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2022,8,3]],"date-time":"2022-08-03T04:40:59Z","timestamp":1659501659332},"reference-count":27,"publisher":"Springer Science and Business Media LLC","issue":"5-6","license":[{"start":{"date-parts":[[2017,9,15]],"date-time":"2017-09-15T00:00:00Z","timestamp":1505433600000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100000038","name":"NSERC","doi-asserted-by":"crossref","award":["PGSD3-454386-2014"],"id":[{"id":"10.13039\/501100000038","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Arch. Math. Logic"],"published-print":{"date-parts":[[2018,8]]},"DOI":"10.1007\/s00153-017-0589-9","type":"journal-article","created":{"date-parts":[[2017,9,15]],"date-time":"2017-09-15T15:31:21Z","timestamp":1505489481000},"page":"473-495","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Computable valued fields"],"prefix":"10.1007","volume":"57","author":[{"given":"Matthew","family":"Harrison-Trainor","sequence":"first","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,9,15]]},"reference":[{"issue":"3","key":"589_CR1","doi-asserted-by":"crossref","first-page":"327","DOI":"10.1007\/s00153-004-0219-1","volume":"43","author":"W Calvert","year":"2004","unstructured":"Calvert, W.: The isomorphism problem for classes of computable fields. Arch. Math. Logic 43(3), 327\u2013336 (2004)","journal-title":"Arch. Math. Logic"},{"key":"589_CR2","doi-asserted-by":"crossref","unstructured":"Chatzidakis, Z.: Introductory notes on the model theory of valued fields. In: Cluckers, R., Nicaise, J., Sebag, J. (eds.) Motivic Integration and Its Interactions with Model Theory and Non-Archimedean Geometry, vol I, volume 383 of London Mathematical Society Lecture Note Series, pp. 35\u201379. Cambridge University Press, Cambridge (2011)","DOI":"10.1017\/CBO9780511667534.002"},{"key":"589_CR3","first-page":"154","volume":"369","author":"J Denef","year":"1986","unstructured":"Denef, J.: $$p$$ p -adic semi-algebraic sets and cell decomposition. J. Reine Angew. Math. 369, 154\u2013166 (1986)","journal-title":"J. Reine Angew. Math."},{"issue":"2","key":"589_CR4","first-page":"18","volume":"24","author":"VP Dobritsa","year":"1983","unstructured":"Dobritsa, V.P.: Some constructivizations of abelian groups. Sibirsk. Mat. Zh. 24(2), 18\u201325 (1983)","journal-title":"Sibirsk. Mat. Zh."},{"key":"589_CR5","series-title":"Springer Monographs in Mathematics","volume-title":"Valued Fields","author":"AJ Engler","year":"2005","unstructured":"Engler, A.J., Prestel, A.: Valued Fields. Springer Monographs in Mathematics. Springer, Berlin (2005)"},{"issue":"1","key":"589_CR6","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/S0001-8708(02)00042-7","volume":"175","author":"SS Goncharov","year":"2003","unstructured":"Goncharov, S.S., Lempp, S., Solomon, R.: The computable dimension of ordered abelian groups. Adv. Math. 175(1), 102\u2013143 (2003)","journal-title":"Adv. Math."},{"key":"589_CR7","unstructured":"Goncharov, S.S.: Limit equivalent constructivizations. In: Mathematical Logic and the Theory of Algorithms, volume\u00a02 of Trudy Institute of Mathematics, pp. 4\u201312. \u201cNauka\u201d Sibirsk. Otdel., Novosibirsk (1982)"},{"key":"589_CR8","doi-asserted-by":"crossref","unstructured":"Harizanov, V.S.: Pure computable model theory. In: Ershov, Y.L., Goncharov, S.S., Nerode, A., Remmel, J.B. (eds) Handbook of recursive mathematics, vol. 1, volume 138 of Studies in Logic and the Foundations of Mathematics, pp. 3\u2013114. North-Holland, Amsterdam (1998)","DOI":"10.1016\/S0049-237X(98)80002-5"},{"key":"589_CR9","doi-asserted-by":"crossref","unstructured":"Harrison-Trainor, M., Melnikov, A., Miller, R.: On computable field embeddings and difference closed fields. Can. J. Math. (to appear)","DOI":"10.4153\/CJM-2016-044-7"},{"key":"589_CR10","doi-asserted-by":"crossref","first-page":"441","DOI":"10.1016\/j.jalgebra.2015.06.004","volume":"443","author":"M Harrison-Trainor","year":"2015","unstructured":"Harrison-Trainor, M., Melnikov, A., Montalb\u00e1n, A.: Independence in computable algebra. J. Algebra 443, 441\u2013468 (2015)","journal-title":"J. Algebra"},{"key":"589_CR11","doi-asserted-by":"crossref","unstructured":"Harrison-Trainor, M., Melnikov, A., Miller, R., Montalb\u00e1n, A.: Computable functors and effective interpretability. J. Symb. Logic 82(1), 77\u201397","DOI":"10.1017\/jsl.2016.12"},{"key":"589_CR12","doi-asserted-by":"crossref","unstructured":"Igusa, G., Knight, J., Schweber, N.: Computing strength of structures related to the field of real numbers. J. Symb. Logic 82(1), 137\u2013150","DOI":"10.1017\/jsl.2016.55"},{"issue":"1","key":"589_CR13","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1112\/plms\/pds070","volume":"107","author":"JF Knight","year":"2013","unstructured":"Knight, J.F., Lange, K.: Complexity of structures associated with real closed fields. Proc. Lond. Math. Soc. (3) 107(1), 177\u2013197 (2013)","journal-title":"Proc. Lond. Math. Soc. (3)"},{"key":"589_CR14","first-page":"1","volume":"92","author":"L Kronecker","year":"1882","unstructured":"Kronecker, L.: Grundz\u00fcge einer arithmetischen theorie der algebraischen gr\u00f6\u00dfen. J. f. Math 92, 1\u2013122 (1882)","journal-title":"J. f. Math"},{"issue":"3","key":"589_CR15","doi-asserted-by":"crossref","first-page":"605","DOI":"10.1017\/S0022481200051173","volume":"41","author":"A Macintyre","year":"1976","unstructured":"Macintyre, A.: On definable subsets of $$p$$ p -adic fields. J. Symb. Logic 41(3), 605\u2013610 (1976)","journal-title":"J. Symb. Logic"},{"issue":"7","key":"589_CR16","first-page":"798","volume":"55","author":"R Miller","year":"2008","unstructured":"Miller, R.: Computable fields and Galois theory. Notices Am. Math. Soc. 55(7), 798\u2013807 (2008)","journal-title":"Notices Am. Math. Soc."},{"key":"589_CR17","doi-asserted-by":"crossref","unstructured":"Marker, D., Miller, R.: Turing degree spectra of differentially closed fields. J. Symb. Logic 82(1), 1\u201325","DOI":"10.1017\/jsl.2016.73"},{"key":"589_CR18","doi-asserted-by":"crossref","first-page":"316","DOI":"10.1016\/j.jalgebra.2014.02.032","volume":"407","author":"R Miller","year":"2014","unstructured":"Miller, R., Ovchinnikov, A., Trushin, D.: Computing constraint sets for differential fields. J. Algebra 407, 316\u2013357 (2014)","journal-title":"J. Algebra"},{"issue":"5","key":"589_CR19","doi-asserted-by":"crossref","first-page":"487","DOI":"10.1002\/malq.200810009","volume":"55","author":"M-H Mourgues","year":"2009","unstructured":"Mourgues, M.-H.: Cell decomposition for $$P$$ P -minimal fields. MLQ Math. Log. Q. 55(5), 487\u2013492 (2009)","journal-title":"MLQ Math. Log. Q."},{"key":"589_CR20","unstructured":"Nurtazin, A.T.: Computable classes and algebraic criteria of autostability. Ph.D. thesis, Novosibirsk (1974)"},{"key":"589_CR21","unstructured":"Ocasio, V.A.: Computability in the class of real closed fields. ProQuest LLC, Ann Arbor, MI, 2014. Thesis (Ph.D.), University of Notre Dame"},{"key":"589_CR22","volume-title":"Formally $$p$$ p -adic Fields, volume 1050","author":"A Prestel","year":"1984","unstructured":"Prestel, A., Roquette, P.: Formally $$p$$ p -adic Fields, volume 1050 of Lecture Notes in Mathematics. Springer, Berlin (1984)"},{"key":"589_CR23","first-page":"341","volume":"95","author":"MO Rabin","year":"1960","unstructured":"Rabin, M.O.: Computable algebra, general theory and theory of computable fields. Trans. Am. Math. Soc. 95, 341\u2013360 (1960)","journal-title":"Trans. Am. Math. Soc."},{"key":"589_CR24","unstructured":"Smith, R.L.: Effective valuation theory. In: Crossley, J. N. (ed.) Aspects of Effective Algebra (Clayton, 1979), pp. 232\u2013245. Upside Down A Book Co., Yarra Glen (1981)"},{"issue":"4","key":"589_CR25","doi-asserted-by":"crossref","first-page":"1138","DOI":"10.1017\/S0022481200027973","volume":"53","author":"P Scowcroft","year":"1988","unstructured":"Scowcroft, P., van den Dries, L.: On the structure of semialgebraic sets over $$p$$ p -adic fields. J. Symb. Logic 53(4), 1138\u20131164 (1988)","journal-title":"J. Symb. Logic"},{"issue":"2","key":"589_CR26","doi-asserted-by":"crossref","first-page":"625","DOI":"10.2307\/2274194","volume":"49","author":"L Dries van den","year":"1984","unstructured":"van den Dries, L.: Algebraic theories with definable Skolem functions. J. Symb. Logic 49(2), 625\u2013629 (1984)","journal-title":"J. Symb. Logic"},{"key":"589_CR27","unstructured":"van\u00a0der Waerden, B.L.: Algebra, vol 1. Translated by Fred Blum and John R. Schulenberger. Frederick Ungar Publishing Co., New York (1970)"}],"container-title":["Archive for Mathematical Logic"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s00153-017-0589-9\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s00153-017-0589-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s00153-017-0589-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,8,2]],"date-time":"2022-08-02T22:25:48Z","timestamp":1659479148000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s00153-017-0589-9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,9,15]]},"references-count":27,"journal-issue":{"issue":"5-6","published-print":{"date-parts":[[2018,8]]}},"alternative-id":["589"],"URL":"https:\/\/doi.org\/10.1007\/s00153-017-0589-9","relation":{},"ISSN":["0933-5846","1432-0665"],"issn-type":[{"value":"0933-5846","type":"print"},{"value":"1432-0665","type":"electronic"}],"subject":[],"published":{"date-parts":[[2017,9,15]]}}}