{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,23]],"date-time":"2024-07-23T16:42:09Z","timestamp":1721752929198},"reference-count":49,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2021,11,27]],"date-time":"2021-11-27T00:00:00Z","timestamp":1637971200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2021,11,27]],"date-time":"2021-11-27T00:00:00Z","timestamp":1637971200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["AI & Soc"],"published-print":{"date-parts":[[2023,8]]},"DOI":"10.1007\/s00146-021-01315-9","type":"journal-article","created":{"date-parts":[[2021,11,27]],"date-time":"2021-11-27T18:04:48Z","timestamp":1638036288000},"page":"1601-1608","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Reflections on epistemological aspects of artificial intelligence during the COVID-19 pandemic"],"prefix":"10.1007","volume":"38","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1818-8270","authenticated-orcid":false,"given":"Angela A. R.","family":"de S\u00e1","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3017-4808","authenticated-orcid":false,"given":"Jairo D.","family":"Carvalho","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4175-723X","authenticated-orcid":false,"given":"Eduardo L. M.","family":"Naves","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,11,27]]},"reference":[{"issue":"8","key":"1315_CR1","doi-asserted-by":"publisher","first-page":"1","DOI":"10.2196\/19104","volume":"22","author":"AS Adly","year":"2020","unstructured":"Adly AS, Adly AS, Adly MS (2020) Approaches based on artificial intelligence and the internet of intelligent things to prevent the spread of COVID-19: scoping review. J Med Internet Res 22(8):1\u201315. https:\/\/doi.org\/10.2196\/19104","journal-title":"J Med Internet Res"},{"key":"1315_CR2","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.imr.2020.100434","volume":"9","author":"AS Ahuja","year":"2020","unstructured":"Ahuja AS, Reddy VP, Marques O (2020) Artificial intelligence and COVID-19: a multidisciplinary approach. Integr Med Res 9:1\u20133. https:\/\/doi.org\/10.1016\/j.imr.2020.100434","journal-title":"Integr Med Res"},{"key":"1315_CR3","doi-asserted-by":"publisher","DOI":"10.1007\/s10916-017-0715-6","author":"HO Alanazi","year":"2017","unstructured":"Alanazi HO, Abdullah AH, Qureshi KN (2017) A critical review for developing accurate and dynamic predictive models using machine learning methods in medicine and health care. J Med Syst. https:\/\/doi.org\/10.1007\/s10916-017-0715-6","journal-title":"J Med Syst"},{"issue":"122","key":"1315_CR4","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10916-020-01582-x","volume":"44","author":"AS Albahri","year":"2020","unstructured":"Albahri AS et al (2020) Role of biological data mining and machine learning techniques in detecting and diagnosing the novel coronavirus (COVID-19): a systematic review. J Med Syst 44(122):1\u201311. https:\/\/doi.org\/10.1007\/s10916-020-01582-x","journal-title":"J Med Syst"},{"issue":"2","key":"1315_CR5","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1109\/MSEC.2018.2888775","volume":"17","author":"M Al-Rubaie","year":"2019","unstructured":"Al-Rubaie M (2019) Privacy-preserving machine learning: threats and solutions. IEEE Secur Priv 17(2):49\u201358. https:\/\/doi.org\/10.1109\/MSEC.2018.2888775","journal-title":"IEEE Secur Priv"},{"issue":"6","key":"1315_CR6","doi-asserted-by":"publisher","first-page":"439","DOI":"10.7763\/IJCTE.2015.V7.999","volume":"7","author":"J Awwalu","year":"2015","unstructured":"Awwalu J et al (2015) Artificial intelligence in personalized medicine application of AI algorithms in solving personalized medicine problems. Int J Comput Theory Eng 7(6):439\u2013443. https:\/\/doi.org\/10.7763\/IJCTE.2015.V7.999","journal-title":"Int J Comput Theory Eng"},{"key":"1315_CR7","doi-asserted-by":"publisher","unstructured":"Bjerring, JC, Busch J (2020) Artificial intelligence and patient-centered decision-making. Philos Technol. doi: https:\/\/doi.org\/10.1007\/s13347-019-00391-6.","DOI":"10.1007\/s13347-019-00391-6"},{"key":"1315_CR8","doi-asserted-by":"publisher","first-page":"389","DOI":"10.1007\/BF00486637","volume":"38","author":"MA Boden","year":"1978","unstructured":"Boden MA (1978) Artifical intelligence and piagetian theory. Synthese 38:389\u2013414","journal-title":"Synthese"},{"issue":"7572","key":"1315_CR9","doi-asserted-by":"publisher","first-page":"804","DOI":"10.1136\/bmj.38987.492014.94","volume":"333","author":"K Brunnhuber","year":"2006","unstructured":"Brunnhuber K et al (2006) How to formulate research recommendations. BMJ 333(7572):804\u2013806. https:\/\/doi.org\/10.1136\/bmj.38987.492014.94","journal-title":"BMJ"},{"issue":"2","key":"1315_CR10","doi-asserted-by":"publisher","first-page":"237","DOI":"10.1353\/pbm.2019.0012","volume":"62","author":"B Chin-Yee","year":"2019","unstructured":"Chin-Yee B, Upshur R (2019) Three problems with big data and artificial intelligence in medicine. Perspect Biol Med 62(2):237\u2013256. https:\/\/doi.org\/10.1353\/pbm.2019.0012","journal-title":"Perspect Biol Med"},{"key":"1315_CR11","doi-asserted-by":"publisher","DOI":"10.1007\/s13347-017-0293-z","author":"PB de Laat","year":"2020","unstructured":"de Laat PB (2020) Algorithmic decision-making based on machine learning from big data: can transparency restore accountability? Philos Technol. https:\/\/doi.org\/10.1007\/s13347-017-0293-z","journal-title":"Philos Technol"},{"issue":"25","key":"1315_CR12","first-page":"1","volume":"1","author":"V Dignum","year":"2017","unstructured":"Dignum V (2017) Responsible artificial intelligence: designing ai for human values. ITU J ICT Discov 1(25):1\u20139","journal-title":"ITU J ICT Discov"},{"key":"1315_CR13","doi-asserted-by":"publisher","DOI":"10.35940\/ijrte.B1592.078219","author":"DJ DSouza","year":"2019","unstructured":"DSouza DJ, Srivatsava S, Prithika R (2019) IoT based smart wheelchair for HealthCare. Int J Recent Technol Eng (IJRTE). https:\/\/doi.org\/10.35940\/ijrte.B1592.078219","journal-title":"Int J Recent Technol Eng (IJRTE)"},{"key":"1315_CR14","doi-asserted-by":"publisher","DOI":"10.1007\/s13347-019-00345-y","author":"L Floridi","year":"2019","unstructured":"Floridi L (2019) What the near future of artificial intelligence could be. Philos Technol. https:\/\/doi.org\/10.1007\/s13347-019-00345-y","journal-title":"Philos Technol"},{"key":"1315_CR15","doi-asserted-by":"publisher","first-page":"355","DOI":"10.1007\/s00146-019-00886-y","volume":"35","author":"T Hagendorff","year":"2020","unstructured":"Hagendorff T, Wezel K (2020) 15 challenges for AI: or what AI (currently) can\u2019t do. AI Soc 35:355\u2013365. https:\/\/doi.org\/10.1007\/s00146-019-00886-y","journal-title":"AI Soc"},{"key":"1315_CR16","doi-asserted-by":"publisher","DOI":"10.1016\/j.metabol.2017.01.011","author":"P Hamet","year":"2017","unstructured":"Hamet P, Tremblay J (2017) Artificial intelligence in medicine. Metabolism. https:\/\/doi.org\/10.1016\/j.metabol.2017.01.011","journal-title":"Metabolism"},{"key":"1315_CR17","doi-asserted-by":"publisher","DOI":"10.1007\/s12115-020-00506-2","author":"T Hauer","year":"2020","unstructured":"Hauer T (2020) Machine ethics, allostery and philosophical anti-dualism: will ai ever make ethically autonomous decisions? Society. https:\/\/doi.org\/10.1007\/s12115-020-00506-2","journal-title":"Society"},{"key":"1315_CR18","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1016\/s0933-3657(01)00072-0","volume":"23","author":"W Horn","year":"2001","unstructured":"Horn W (2001) AI in mediciente on its way from knowledge-intensive to data-intensive systems. Artif Intell Med 23:5\u201312. https:\/\/doi.org\/10.1016\/s0933-3657(01)00072-0","journal-title":"Artif Intell Med"},{"key":"1315_CR19","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.3007939","author":"AA Hussain","year":"2020","unstructured":"Hussain AA et al (2020) AI techniques for COVID-19. IEEE Access. https:\/\/doi.org\/10.1109\/ACCESS.2020.3007939","journal-title":"IEEE Access"},{"key":"1315_CR20","doi-asserted-by":"publisher","DOI":"10.1016\/j.bushor.2018.03.007","author":"MH Jarrahi","year":"2018","unstructured":"Jarrahi MH (2018) Artificial intelligence and the future of work: human-AI symbiosis in organizational decision making. Kelley Sch Bus. https:\/\/doi.org\/10.1016\/j.bushor.2018.03.007","journal-title":"Kelley Sch Bus"},{"issue":"2","key":"1315_CR21","doi-asserted-by":"publisher","first-page":"1","DOI":"10.5812\/archcid.103232","volume":"15","author":"S Kannan","year":"2020","unstructured":"Kannan S et al (2020) The Role of artificial intelligence and machine learning techniques: race for COVID-19 vaccine. Arch Clin Infect Dis 15(2):1\u20139. https:\/\/doi.org\/10.5812\/archcid.103232","journal-title":"Arch Clin Infect Dis"},{"key":"1315_CR22","doi-asserted-by":"publisher","first-page":"1","DOI":"10.3389\/frai.2021.622364","volume":"4","author":"JE Korteling","year":"2021","unstructured":"Korteling JE et al (2021) Human- versus artificial intelligence. Front Artif Intell 4:1\u201313. https:\/\/doi.org\/10.3389\/frai.2021.622364","journal-title":"Front Artif Intell"},{"key":"1315_CR23","doi-asserted-by":"publisher","DOI":"10.7860\/JCDR\/2020\/45341.13919","author":"P Kulkarni","year":"2020","unstructured":"Kulkarni P et al (2020) Utility of digital technology in tackling the COVID-19 pandemic: a current review. J Clin Diagn Res. https:\/\/doi.org\/10.7860\/JCDR\/2020\/45341.13919","journal-title":"J Clin Diagn Res"},{"key":"1315_CR24","doi-asserted-by":"publisher","DOI":"10.1038\/s41591-021-01461-z","author":"S Kundu","year":"2021","unstructured":"Kundu S (2021) AI in medicine must be explainable. Nat Med. https:\/\/doi.org\/10.1038\/s41591-021-01461-z","journal-title":"Nat Med"},{"key":"1315_CR25","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.chaos.2020.110059","volume":"139","author":"S Lalmuanawma","year":"2020","unstructured":"Lalmuanawma S, Hussain J, Chhakchhuak L (2020) Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: a review. Chaos Solitons Fractals 139:1\u20136. https:\/\/doi.org\/10.1016\/j.chaos.2020.110059","journal-title":"Chaos Solitons Fractals"},{"key":"1315_CR26","doi-asserted-by":"publisher","DOI":"10.1007\/s11229-019-02192-y","author":"J Landgrebe","year":"2019","unstructured":"Landgrebe J, Smith B (2019) Making AI meaningful again. Synthese. https:\/\/doi.org\/10.1007\/s11229-019-02192-y","journal-title":"Synthese"},{"key":"1315_CR27","doi-asserted-by":"publisher","DOI":"10.1016\/j.future.2018.04.076","author":"P Li","year":"2018","unstructured":"Li P et al (2018) Privacy-preserving machine learning with multiple data providers. Future Gener Comput Syst. https:\/\/doi.org\/10.1016\/j.future.2018.04.076","journal-title":"Future Gener Comput Syst"},{"key":"1315_CR28","doi-asserted-by":"publisher","DOI":"10.1093\/jtm\/taaa080","author":"L Lin","year":"2020","unstructured":"Lin L, Hou Z (2020) Combat COVID-19 with artificial intelligence and big data. J Travel Med. https:\/\/doi.org\/10.1093\/jtm\/taaa080","journal-title":"J Travel Med"},{"key":"1315_CR29","doi-asserted-by":"publisher","DOI":"10.1007\/s13347-020-00408-5","author":"F Luciano","year":"2020","unstructured":"Luciano F (2020) Mind the app\u2014considerations on the ethical risks of COVID-19 apps title. Philos Technol. https:\/\/doi.org\/10.1007\/s13347-020-00408-5","journal-title":"Philos Technol"},{"issue":"46","key":"1315_CR30","doi-asserted-by":"publisher","first-page":"46","DOI":"10.1016\/j.futures.2017.03.006","volume":"90","author":"S Makridakis","year":"2017","unstructured":"Makridakis S (2017) The forthcoming Artificial Intelligence (AI) revolution: its impact on society and firms. Futures 90(46):46\u201360. https:\/\/doi.org\/10.1016\/j.futures.2017.03.006","journal-title":"Futures"},{"issue":"b2535","key":"1315_CR31","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1136\/bmj.b2535","volume":"339","author":"D Moher","year":"2009","unstructured":"Moher D et al (2009a) Preferred reportingitems for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339(b2535):1\u20138. https:\/\/doi.org\/10.1136\/bmj.b2535","journal-title":"BMJ"},{"issue":"7","key":"1315_CR32","doi-asserted-by":"publisher","first-page":"e1000097","DOI":"10.1371\/journal.pmed.1000097","volume":"6","author":"D Moher","year":"2009","unstructured":"Moher D et al (2009b) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med (united States) 6(7):e1000097. https:\/\/doi.org\/10.1371\/journal.pmed.1000097","journal-title":"PLoS Med (united States)"},{"key":"1315_CR33","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/ACCESS.2020","volume":"4","author":"Q-V PHAM","year":"2020","unstructured":"PHAM Q-V et al (2020) Artificial Intelligence (AI) and big data for coronavirus (COVID-19) pandemic: a survey on the state-of-the-arts. IEEE Access 4:1\u201319. https:\/\/doi.org\/10.1109\/ACCESS.2020","journal-title":"IEEE Access"},{"key":"1315_CR34","doi-asserted-by":"publisher","DOI":"10.7312\/piag91272","volume-title":"Genetic epistemology","author":"J Piaget","year":"1970","unstructured":"Piaget J (1970) Genetic epistemology. Columbia University Press, London"},{"issue":"5","key":"1315_CR35","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1080\/019697297126047","volume":"28","author":"E Prem","year":"2010","unstructured":"Prem E (2010) Epistemological aspects of embodied artificial intelligence. Cybern Syst 28(5):3\u20139. https:\/\/doi.org\/10.1080\/019697297126047","journal-title":"Cybern Syst"},{"issue":"337","key":"1315_CR36","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.chaos.2020.110337","volume":"110","author":"J Rasheed","year":"2020","unstructured":"Rasheed J et al (2020) A survey on artificial intelligence approaches in supporting frontline workers and decision makers for the COVID-19 pandemic. Chaos Solitons Fractals 110(337):1\u201318. https:\/\/doi.org\/10.1016\/j.chaos.2020.110337","journal-title":"Chaos Solitons Fractals"},{"key":"1315_CR37","doi-asserted-by":"publisher","first-page":"141","DOI":"10.1007\/BF00869952","volume":"80","author":"JA Rowell","year":"1989","unstructured":"Rowell JA (1989) Piagetian epistemology: equilibration and the teaching of science. Synthese 80:141\u2013160","journal-title":"Synthese"},{"key":"1315_CR38","doi-asserted-by":"publisher","DOI":"10.1007\/s13347-018-0326-2","author":"F Russo","year":"2018","unstructured":"Russo F (2018) Digital technologies, ethical questions, and the need of an informational framework. Philos Technol. https:\/\/doi.org\/10.1007\/s13347-018-0326-2","journal-title":"Philos Technol"},{"key":"1315_CR39","doi-asserted-by":"publisher","first-page":"881","DOI":"10.1007\/s13164-020-00473-x","volume":"11","author":"S Schmetkamp","year":"2020","unstructured":"Schmetkamp S (2020) Understanding A.I.\u2014can and should we empathize with robots? Rev Philos Psychol 11:881\u2013897. https:\/\/doi.org\/10.1007\/s13164-020-00473-x","journal-title":"Rev Philos Psychol"},{"key":"1315_CR40","doi-asserted-by":"publisher","DOI":"10.1007\/s11229-019-02167-z","author":"A Schubbach","year":"2019","unstructured":"Schubbach A (2019) Judgingmachines: philosophical aspects of deep learning. Synthese. https:\/\/doi.org\/10.1007\/s11229-019-02167-z","journal-title":"Synthese"},{"issue":"3","key":"1315_CR41","doi-asserted-by":"publisher","first-page":"26","DOI":"10.1109\/MSP.2018.2701164","volume":"16","author":"BC Stahl","year":"2018","unstructured":"Stahl BC, Wright D (2018) Ethics and privacy in AI and big data: implementing responsible research and innovation. Ethics Priv AI Big Data Implementing Responsib Res Innov 16(3):26\u201333. https:\/\/doi.org\/10.1109\/MSP.2018.2701164","journal-title":"Ethics Priv AI Big Data Implementing Responsib Res Innov"},{"key":"1315_CR42","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.chaos.2020.109947","volume":"138","author":"H Swapnarekha","year":"2020","unstructured":"Swapnarekha H et al (2020) Role of intelligent computing in COVID-19 prognosis: a state-of-the-art review. Chaos Solitons Fractals 138:1\u201315. https:\/\/doi.org\/10.1016\/j.chaos.2020.109947","journal-title":"Chaos Solitons Fractals"},{"key":"1315_CR43","doi-asserted-by":"publisher","first-page":"1057","DOI":"10.1007\/s10459-020-10009-8","volume":"25","author":"MG Tolsgaard","year":"2020","unstructured":"Tolsgaard MG et al (2020) The role of data science and machine learning in health professions education: practical applications, theoretical contributions, and epistemic beliefs. Adv Health Sci Educ 25:1057\u20131086. https:\/\/doi.org\/10.1007\/s10459-020-10009-8","journal-title":"Adv Health Sci Educ"},{"key":"1315_CR44","doi-asserted-by":"publisher","first-page":"337","DOI":"10.1016\/j.dsx.2020.04.012","volume":"14","author":"R Vaishya","year":"2020","unstructured":"Vaishya R et al (2020) Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab Syndr 14:337\u2013339. https:\/\/doi.org\/10.1016\/j.dsx.2020.04.012","journal-title":"Diabetes Metab Syndr"},{"key":"1315_CR45","doi-asserted-by":"publisher","DOI":"10.1111\/medu.14131","author":"AG van der Niet","year":"2020","unstructured":"van der Niet AG, Bleakley A (2020) Where medical education meets artificial intelligence: does technology care? Med Educ. https:\/\/doi.org\/10.1111\/medu.14131","journal-title":"Med Educ"},{"issue":"6","key":"1315_CR46","doi-asserted-by":"publisher","first-page":"868","DOI":"10.18178\/ijmlc.2019.9.6.885","volume":"29","author":"OO Varlamov","year":"2019","unstructured":"Varlamov OO et al (2019) Logical, Philosophical and ethical aspects of AI in medicine. Int J Mach Learn Comput 29(6):868\u2013873. https:\/\/doi.org\/10.18178\/ijmlc.2019.9.6.885","journal-title":"Int J Mach Learn Comput"},{"key":"1315_CR47","doi-asserted-by":"crossref","unstructured":"Vasconcelos M, Cardonha C, Goncalves B (2018) Modeling epistemological principles for bias mitigation in AI systems: an illustration in hiring decisions. In: AIES \u201918: proceedings of the 2018 AAAI\/ACM conference on AI, ethics, and society. New York, NY, pp. 1\u20137","DOI":"10.1145\/3278721.3278751"},{"key":"1315_CR48","doi-asserted-by":"publisher","DOI":"10.1007\/s00146-020-01066-z","author":"J Walmsley","year":"2020","unstructured":"Walmsley J (2020) Artificial intelligence and the value of transparency. AI Soc. https:\/\/doi.org\/10.1007\/s00146-020-01066-z","journal-title":"AI Soc"},{"issue":"1","key":"1315_CR49","doi-asserted-by":"publisher","first-page":"743","DOI":"10.32604\/cmc.2020.011391","volume":"65","author":"P Yu","year":"2020","unstructured":"Yu P et al (2020) An application review of artificial intelligence in prevention and cure of COVID-19 pandemic. Comput Mater Cont 65(1):743\u2013760. https:\/\/doi.org\/10.32604\/cmc.2020.011391","journal-title":"Comput Mater Cont"}],"container-title":["AI & SOCIETY"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00146-021-01315-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00146-021-01315-9\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00146-021-01315-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,7,13]],"date-time":"2023-07-13T18:02:55Z","timestamp":1689271375000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00146-021-01315-9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,11,27]]},"references-count":49,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2023,8]]}},"alternative-id":["1315"],"URL":"https:\/\/doi.org\/10.1007\/s00146-021-01315-9","relation":{},"ISSN":["0951-5666","1435-5655"],"issn-type":[{"value":"0951-5666","type":"print"},{"value":"1435-5655","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,11,27]]},"assertion":[{"value":"23 March 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"5 November 2021","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"27 November 2021","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}},{"value":"Not applicable.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethical approval"}},{"value":"Not applicable.","order":4,"name":"Ethics","group":{"name":"EthicsHeading","label":"Consent to participate"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}