{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:05:21Z","timestamp":1722470721299},"reference-count":51,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"name":"JST CREST","award":["JPMJCR22D1","JPMJCR22D1","JPMJCR22D1","JPMJCR22D1"]},{"name":"JSPS KAKENHI","award":["JP22H00551","JP22H00551","JP22H00551","JP22H00551"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Machine Vision and Applications"],"published-print":{"date-parts":[[2024,7]]},"DOI":"10.1007\/s00138-024-01578-4","type":"journal-article","created":{"date-parts":[[2024,7,9]],"date-time":"2024-07-09T15:22:41Z","timestamp":1720538561000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["A framework of specialized knowledge distillation for Siamese tracker on challenging attributes"],"prefix":"10.1007","volume":"35","author":[{"given":"Yiding","family":"Li","sequence":"first","affiliation":[]},{"given":"Atsushi","family":"Shimada","sequence":"additional","affiliation":[]},{"given":"Tsubasa","family":"Minematsu","sequence":"additional","affiliation":[]},{"given":"Cheng","family":"Tang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,7,9]]},"reference":[{"key":"1578_CR1","doi-asserted-by":"crossref","unstructured":"Yi, Wu., J.L., Yang, M.-H,: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834\u20131848 (2015)","DOI":"10.1109\/TPAMI.2014.2388226"},{"key":"1578_CR2","doi-asserted-by":"crossref","unstructured":"Fan, H., Lin, L., Yang, F., Chu, P., Deng, G., Yu, S., Bai, H., Xu, Y., Liao, C., Ling, H.: Lasot: A high-quality benchmark for large-scale single object tracking. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 5374\u20135383 (2019)","DOI":"10.1109\/CVPR.2019.00552"},{"key":"1578_CR3","doi-asserted-by":"crossref","unstructured":"Tao, R., Gavves, E., Smeulders, A.W.: Siamese instance search for tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 1420\u20131429 (2016)","DOI":"10.1109\/CVPR.2016.158"},{"key":"1578_CR4","doi-asserted-by":"crossref","unstructured":"Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision\u2013ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, 850\u2013865 (2016). Springer","DOI":"10.1007\/978-3-319-48881-3_56"},{"key":"1578_CR5","doi-asserted-by":"crossref","unstructured":"Dong, X., Shen, J.: Triplet loss in siamese network for object tracking. In: Proceedings of the European conference on computer vision (ECCV), 459\u2013474 (2018)","DOI":"10.1007\/978-3-030-01261-8_28"},{"key":"1578_CR6","doi-asserted-by":"crossref","unstructured":"Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 8971\u20138980 (2018)","DOI":"10.1109\/CVPR.2018.00935"},{"key":"1578_CR7","doi-asserted-by":"crossref","unstructured":"Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European conference on computer vision (ECCV), 101\u2013117 (2018)","DOI":"10.1007\/978-3-030-01240-3_7"},{"key":"1578_CR8","doi-asserted-by":"crossref","unstructured":"Gao, J., Zhang, T., Xu, C.: Graph convolutional tracking. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, 4649\u20134659 (2019)","DOI":"10.1109\/CVPR.2019.00478"},{"key":"1578_CR9","doi-asserted-by":"crossref","unstructured":"Choi, J., Kwon, J., Lee, K.M.: Deep meta learning for real-time target-aware visual tracking. In: Proceedings of the IEEE\/CVF international conference on computer vision, 911\u2013920 (2019)","DOI":"10.1109\/ICCV.2019.00100"},{"key":"1578_CR10","unstructured":"Kristan, M., Leonardis, A., Matas, J., Felsberg, M., Pflugfelder, R., \u010cehovin\u00a0Zajc, L., Vojir, T., Bhat, G., Lukezic, A., Eldesokey, A., : The sh visual object tracking vot2018 challenge results. In: Proceedings of the European conference on computer vision (ECCV) Workshops, 0\u20130 (2018ixt)"},{"key":"1578_CR11","doi-asserted-by":"crossref","unstructured":"Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: Siamrpn++: Evolution of siamese visual tracking with very deep networks. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, 4282\u20134291 (2019)","DOI":"10.1109\/CVPR.2019.00441"},{"key":"1578_CR12","unstructured":"Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)"},{"key":"1578_CR13","doi-asserted-by":"publisher","first-page":"106","DOI":"10.1016\/j.neucom.2020.07.048","volume":"415","author":"Y Liu","year":"2020","unstructured":"Liu, Y., Zhang, W., Wang, J.: Adaptive multi-teacher multi-level knowledge distillation. Neurocomputing 415, 106\u2013113 (2020)","journal-title":"Neurocomputing"},{"key":"1578_CR14","doi-asserted-by":"crossref","unstructured":"Meng, Z., Yao, X., Sun, L.: Multi-task distillation: Towards mitigating the negative transfer in multi-task learning. In: 2021 IEEE international conference on image processing (ICIP), pp. 389\u2013393 (2021). IEEE","DOI":"10.1109\/ICIP42928.2021.9506618"},{"key":"1578_CR15","doi-asserted-by":"crossref","unstructured":"Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: 2010 IEEE Computer society conference on computer vision and pattern recognition, pp. 2544\u20132550 (2010). IEEE","DOI":"10.1109\/CVPR.2010.5539960"},{"key":"1578_CR16","doi-asserted-by":"crossref","unstructured":"Danelljan, M., Robinson, A., Shahbaz\u00a0Khan, F., Felsberg, M.: Beyond correlation filters: learning continuous convolution operators for visual tracking. In: Computer Vision\u2013ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11\u201314, 2016, Proceedings, Part V 14, 472\u2013488 (2016). Springer","DOI":"10.1007\/978-3-319-46454-1_29"},{"key":"1578_CR17","doi-asserted-by":"publisher","first-page":"267","DOI":"10.1109\/TIP.2022.3227814","volume":"32","author":"T Liang","year":"2022","unstructured":"Liang, T., Li, B., Wang, M., Tan, H., Luo, Z.: A closer look at the joint training of object detection and re-identification in multi-object tracking. IEEE Trans. Image Process. 32, 267\u2013280 (2022)","journal-title":"IEEE Trans. Image Process."},{"key":"1578_CR18","unstructured":"Wang, N., Yeung, D.-Y.: Learning a deep compact image representation for visual tracking. Advances in neural information processing systems 26 (2013)"},{"issue":"5","key":"1578_CR19","doi-asserted-by":"publisher","first-page":"1116","DOI":"10.1109\/TPAMI.2018.2828817","volume":"41","author":"Y Qi","year":"2018","unstructured":"Qi, Y., Zhang, S., Qin, L., Huang, Q., Yao, H., Lim, J., Yang, M.-H.: Hedging deep features for visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 41(5), 1116\u20131130 (2018)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"1578_CR20","doi-asserted-by":"crossref","unstructured":"Valmadre, J., Bertinetto, L., Henriques, J., Vedaldi, A., Torr, P.H.: End-to-end representation learning for correlation filter based tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2805\u20132813 (2017)","DOI":"10.1109\/CVPR.2017.531"},{"key":"1578_CR21","doi-asserted-by":"crossref","unstructured":"Dong, X., Shen, J., Wang, W., Liu, Y., Shao, L., Porikli, F.: Hyperparameter optimization for tracking with continuous deep q-learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 518\u2013527 (2018)","DOI":"10.1109\/CVPR.2018.00061"},{"key":"1578_CR22","unstructured":"Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems 28 (2015)"},{"key":"1578_CR23","doi-asserted-by":"crossref","unstructured":"Wang, Q., Zhang, L., Bertinetto, L., Hu, W., Torr, P.H.: Fast online object tracking and segmentation: a unifying approach. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, 1328\u20131338 (2019)","DOI":"10.1109\/CVPR.2019.00142"},{"key":"1578_CR24","doi-asserted-by":"crossref","unstructured":"Fan, H., Ling, H.: Siamese cascaded region proposal networks for real-time visual tracking. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp. 7952\u20137961 (2019)","DOI":"10.1109\/CVPR.2019.00814"},{"key":"1578_CR25","doi-asserted-by":"crossref","unstructured":"Xu, Y., Wang, Z., Li, Z., Yuan, Y., Yu, G.: Siamfc++: Towards robust and accurate visual tracking with target estimation guidelines. In: Proceedings of the AAAI conference on artificial intelligence, vol. 34, pp. 12549\u201312556 (2020)","DOI":"10.1609\/aaai.v34i07.6944"},{"key":"1578_CR26","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"1578_CR27","doi-asserted-by":"crossref","unstructured":"Yan, B., Peng, H., Wu, K., Wang, D., Fu, J., Lu, H.: Lighttrack: Finding lightweight neural networks for object tracking via one-shot architecture search. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp. 15180\u201315189 (2021)","DOI":"10.1109\/CVPR46437.2021.01493"},{"issue":"12","key":"1578_CR28","doi-asserted-by":"publisher","first-page":"3300","DOI":"10.1049\/ipr2.12565","volume":"16","author":"Y Xue","year":"2022","unstructured":"Xue, Y., Jin, G., Shen, T., Tan, L., Yang, J., Hou, X.: Mobiletrack: Siamese efficient mobile network for high-speed uav tracking. IET Image Proc. 16(12), 3300\u20133313 (2022)","journal-title":"IET Image Proc."},{"key":"1578_CR29","doi-asserted-by":"publisher","DOI":"10.1109\/TASE.2023.3319676","author":"F Gu","year":"2023","unstructured":"Gu, F., Lu, J., Cai, C., Zhu, Q., Ju, Z.: Eantrack: an efficient attention network for visual tracking. IEEE Trans. Autom. Sci. Eng. (2023). https:\/\/doi.org\/10.1109\/TASE.2023.3319676","journal-title":"IEEE Trans. Autom. Sci. Eng."},{"key":"1578_CR30","first-page":"1","volume":"71","author":"F Gu","year":"2022","unstructured":"Gu, F., Lu, J., Cai, C.: Rpformer: a robust parallel transformer for visual tracking in complex scenes. IEEE Trans. Instrum. Meas. 71, 1\u201314 (2022)","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"1578_CR31","doi-asserted-by":"publisher","DOI":"10.1109\/TETCI.2024.3360303","author":"F Gu","year":"2024","unstructured":"Gu, F., Lu, J., Cai, C., Zhu, Q., Ju, Z.: Vtst: efficient visual tracking with a stereoscopic transformer. IEEE Trans. Emerg. Top. Comput. Intell. (2024). https:\/\/doi.org\/10.1109\/TETCI.2024.3360303","journal-title":"IEEE Trans. Emerg. Top. Comput. Intell."},{"key":"1578_CR32","doi-asserted-by":"publisher","DOI":"10.1109\/THMS.2024.3370582","author":"F Gu","year":"2024","unstructured":"Gu, F., Lu, J., Cai, C., Zhu, Q., Ju, Z.: Rtsformer: a robust toroidal transformer with spatiotemporal features for visual tracking. IEEE Trans. Hum. Mach. Syst. (2024). https:\/\/doi.org\/10.1109\/THMS.2024.3370582","journal-title":"IEEE Trans. Hum. Mach. Syst."},{"key":"1578_CR33","doi-asserted-by":"crossref","unstructured":"Gopal, G.Y., Amer, M.A.: Separable self and mixed attention transformers for efficient object tracking. In: Proceedings of the IEEE\/CVF winter conference on applications of computer vision. pp. 6708\u20136717 (2024)","DOI":"10.1109\/WACV57701.2024.00657"},{"key":"1578_CR34","doi-asserted-by":"crossref","unstructured":"Blatter, P., Kanakis, M., Danelljan, M., Gool, L.V.: Efficient visual tracking with exemplar transformers. In: 2023 IEEE\/CVF winter conference on applications of computer vision (WACV), pp. 1571\u20131581 (2023)","DOI":"10.1109\/WACV56688.2023.00162"},{"issue":"5","key":"1578_CR35","doi-asserted-by":"publisher","first-page":"1562","DOI":"10.1109\/TPAMI.2019.2957464","volume":"43","author":"L Huang","year":"2019","unstructured":"Huang, L., Zhao, X., Huang, K.: Got-10k: a large high-diversity benchmark for generic object tracking in the wild. IEEE Trans. Pattern Anal. Mach. Intell. 43(5), 1562\u20131577 (2019)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"3","key":"1578_CR36","first-page":"1224","volume":"70","author":"D Yuan","year":"2022","unstructured":"Yuan, D., Shu, X., Liu, Q., He, Z.: Aligned spatial-temporal memory network for thermal infrared target tracking. IEEE Trans. Circuits Syst. II Express Briefs 70(3), 1224\u20131228 (2022)","journal-title":"IEEE Trans. Circuits Syst. II Express Briefs"},{"key":"1578_CR37","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2023.3305728","author":"Y Xue","year":"2023","unstructured":"Xue, Y., Jin, G., Shen, T., Tan, L., Wang, N., Gao, J., Wang, L.: Smalltrack: wavelet pooling and graph enhanced classification for uav small object tracking. IEEE Trans. Geosci. Remote Sens. (2023). https:\/\/doi.org\/10.1109\/TGRS.2023.3305728","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"12","key":"1578_CR38","doi-asserted-by":"publisher","first-page":"8896","DOI":"10.1109\/TPAMI.2021.3127492","volume":"44","author":"J Shen","year":"2021","unstructured":"Shen, J., Liu, Y., Dong, X., Lu, X., Khan, F.S., Hoi, S.: Distilled siamese networks for visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 44(12), 8896\u20138909 (2021)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"1578_CR39","unstructured":"Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550 (2014)"},{"key":"1578_CR40","unstructured":"Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928 (2016)"},{"key":"1578_CR41","doi-asserted-by":"crossref","unstructured":"Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: fast optimization, network minimization and transfer learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4133\u20134141 (2017)","DOI":"10.1109\/CVPR.2017.754"},{"key":"1578_CR42","unstructured":"Park, S., Kwak, N.: Feature-level ensemble knowledge distillation for aggregating knowledge from multiple networks. In: ECAI 2020, pp. 1411\u20131418. IOS Press (2020)"},{"key":"1578_CR43","doi-asserted-by":"crossref","unstructured":"You, S., Xu, C., Xu, C., Tao, D.: Learning from multiple teacher networks. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp. 1285\u20131294 (2017)","DOI":"10.1145\/3097983.3098135"},{"key":"1578_CR44","unstructured":"Tan, X., Ren, Y., He, D., Qin, T., Zhao, Z., Liu, T.-Y.: Multilingual neural machine translation with knowledge distillation. arXiv preprint arXiv:1902.10461 (2019)"},{"key":"1578_CR45","doi-asserted-by":"publisher","DOI":"10.1109\/TCSS.2023.3293882","author":"T Liang","year":"2023","unstructured":"Liang, T., Wang, M., Chen, J., Chen, D., Luo, Z., Leung, V.C.: Compressing the multiobject tracking model via knowledge distillation. IEEE Trans. Comput. Social Syst. (2023). https:\/\/doi.org\/10.1109\/TCSS.2023.3293882","journal-title":"IEEE Trans. Comput. Social Syst."},{"key":"1578_CR46","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems 25 (2012)"},{"key":"1578_CR47","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","volume":"115","author":"O Russakovsky","year":"2015","unstructured":"Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211\u2013252 (2015)","journal-title":"Int. J. Comput. Vision"},{"key":"1578_CR48","doi-asserted-by":"crossref","unstructured":"Choi, J., Chang, H.J., Fischer, T., Yun, S., Lee, K., Jeong, J., Demiris, Y., Choi, J.Y.: Context-aware deep feature compression for high-speed visual tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 479\u2013488 (2018)","DOI":"10.1109\/CVPR.2018.00057"},{"key":"1578_CR49","doi-asserted-by":"crossref","unstructured":"Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4293\u20134302 (2016)","DOI":"10.1109\/CVPR.2016.465"},{"key":"1578_CR50","doi-asserted-by":"crossref","unstructured":"Huang, L., Zhao, X., Huang, K.: Globaltrack: A simple and strong baseline for long-term tracking. In: Proceedings of the AAAI conference on artificial intelligence. 34, 11037\u201311044 (2020)","DOI":"10.1609\/aaai.v34i07.6758"},{"key":"1578_CR51","doi-asserted-by":"crossref","unstructured":"Borsuk, V., Vei, R., Kupyn, O., Martyniuk, T., Krashenyi, I., Matas, J.: Fear: Fast, efficient, accurate and robust visual tracker. In: European conference on computer vision, pp. 644\u2013663 (2022). Springer","DOI":"10.1007\/978-3-031-20047-2_37"}],"container-title":["Machine Vision and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00138-024-01578-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00138-024-01578-4\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00138-024-01578-4.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,31]],"date-time":"2024-07-31T19:36:33Z","timestamp":1722454593000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00138-024-01578-4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,7]]},"references-count":51,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2024,7]]}},"alternative-id":["1578"],"URL":"https:\/\/doi.org\/10.1007\/s00138-024-01578-4","relation":{"has-preprint":[{"id-type":"doi","id":"10.21203\/rs.3.rs-3701966\/v1","asserted-by":"object"}]},"ISSN":["0932-8092","1432-1769"],"issn-type":[{"type":"print","value":"0932-8092"},{"type":"electronic","value":"1432-1769"}],"subject":[],"published":{"date-parts":[[2024,7]]},"assertion":[{"value":"3 December 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"22 June 2024","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"25 June 2024","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"9 July 2024","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}],"article-number":"94"}}