{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,11]],"date-time":"2024-07-11T06:36:33Z","timestamp":1720679793271},"reference-count":64,"publisher":"Springer Science and Business Media LLC","issue":"7-8","license":[{"start":{"date-parts":[[2019,8,1]],"date-time":"2019-08-01T00:00:00Z","timestamp":1564617600000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,8,1]],"date-time":"2019-08-01T00:00:00Z","timestamp":1564617600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"crossref","award":["61731001","U1435220"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Machine Vision and Applications"],"published-print":{"date-parts":[[2019,10]]},"DOI":"10.1007\/s00138-019-01043-7","type":"journal-article","created":{"date-parts":[[2019,8,1]],"date-time":"2019-08-01T05:20:32Z","timestamp":1564636832000},"page":"1157-1180","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":14,"title":["One-shot learning hand gesture recognition based on modified 3d convolutional neural networks"],"prefix":"10.1007","volume":"30","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0440-9175","authenticated-orcid":false,"given":"Zhi","family":"Lu","sequence":"first","affiliation":[]},{"given":"Shiyin","family":"Qin","sequence":"additional","affiliation":[]},{"given":"Xiaojie","family":"Li","sequence":"additional","affiliation":[]},{"given":"Lianwei","family":"Li","sequence":"additional","affiliation":[]},{"given":"Dinghao","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,8,1]]},"reference":[{"issue":"3","key":"1043_CR1","doi-asserted-by":"publisher","first-page":"311","DOI":"10.1109\/TSMCC.2007.893280","volume":"37","author":"S Mitra","year":"2007","unstructured":"Mitra, S., Acharya, T.: Gesture recognition: a survey. IEEE Trans. Syst. Man Cybern. Part C 37(3), 311\u2013324 (2007)","journal-title":"IEEE Trans. Syst. Man Cybern. Part C"},{"issue":"1","key":"1043_CR2","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10462-012-9356-9","volume":"43","author":"SS Rautaray","year":"2015","unstructured":"Rautaray, S.S., Agrawal, A.: Vision based hand gesture recognition for human computer interaction: a survey. Artif. Intell. Rev. 43(1), 1\u201354 (2015)","journal-title":"Artif. Intell. Rev."},{"issue":"4","key":"1043_CR3","first-page":"203","volume":"7","author":"K Qian","year":"2013","unstructured":"Qian, K., Niu, J., Yang, H.: Developing a gesture based remote human-robot interaction system using Kinect. Int. J. Smart Home 7(4), 203\u2013208 (2013)","journal-title":"Int. J. Smart Home"},{"issue":"12","key":"1043_CR4","doi-asserted-by":"publisher","first-page":"1371","DOI":"10.1109\/34.735811","volume":"20","author":"J Weaver","year":"1998","unstructured":"Weaver, J., Starner, T., Pentland, A.: Real-time american sign language recognition using desk and wearable computer based video. IEEE Trans. Pattern Anal. Mach. Intell. 20(12), 1371\u20131375 (1998)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"3","key":"1043_CR5","doi-asserted-by":"publisher","first-page":"190","DOI":"10.1109\/MSP.2013.2241312","volume":"30","author":"F Porikli","year":"2013","unstructured":"Porikli, F., Br\u00e9mond, F., Dockstader, S.L., Ferryman, J., Hoogs, A., Lovell, B.C., Pankanti, S., Rinner, B., Tu, P., Venetianer, P.L.: Video surveillance: past, present, and now the future. IEEE Signal Process. Mag. 30(3), 190\u2013198 (2013)","journal-title":"IEEE Signal Process. Mag."},{"key":"1043_CR6","doi-asserted-by":"publisher","first-page":"728","DOI":"10.1007\/978-3-540-73110-8_79","volume-title":"Human-Computer Interaction. HCI Intelligent Multimodal Interaction Environments","author":"Stefan Reifinger","year":"2007","unstructured":"Reifinger, S., Wallhoff, F., Ablassmeier, M., Poitschke, T., Rigoll, G.: Static and dynamic hand-gesture recognition for augmented reality applications. In: Proceedings of the 12th International Conference on Human-computer Interaction: Intelligent Multimodal Interaction Environments, pp. 728\u2013737 (2007)"},{"key":"1043_CR7","doi-asserted-by":"crossref","unstructured":"Molchanov, P., Gupta, S., Kim, K., Kautz, J.: Hand gesture recognition with 3d convolutional neural networks. In: CVPR, pp. 1\u20137 (2015)","DOI":"10.1109\/CVPRW.2015.7301342"},{"key":"1043_CR8","doi-asserted-by":"crossref","unstructured":"Molchanov, P., Yang, X., Gupta, S., Kim, K., Tyree, S., Kautz, J.: Online detection and classification of dynamic hand gestures with recurrent 3d convolutional neural net-work. In: CVPR, pp. 4207\u20134215 (2016)","DOI":"10.1109\/CVPR.2016.456"},{"issue":"4","key":"1043_CR9","doi-asserted-by":"publisher","first-page":"594","DOI":"10.1109\/TPAMI.2006.79","volume":"28","author":"F Li","year":"2006","unstructured":"Li, F., Rob, F., Pietro, P.: One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 594\u2013611 (2006)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"1043_CR10","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1106\u20131114 (2012)"},{"key":"1043_CR11","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR, pp. 1\u20139 (2015)","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"1043_CR12","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint \n arXiv:1409.1556\n \n (2014)"},{"issue":"1","key":"1043_CR13","doi-asserted-by":"publisher","first-page":"221","DOI":"10.1109\/TPAMI.2012.59","volume":"35","author":"S Ji","year":"2013","unstructured":"Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. PAMI 35(1), 221\u2013231 (2013)","journal-title":"PAMI"},{"key":"1043_CR14","doi-asserted-by":"crossref","unstructured":"Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: CVPR, pp. 1725\u20131732 (2014)","DOI":"10.1109\/CVPR.2014.223"},{"key":"1043_CR15","doi-asserted-by":"crossref","unstructured":"Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: ICCV, pp. 4489\u20134497 (2015)","DOI":"10.1109\/ICCV.2015.510"},{"key":"1043_CR16","unstructured":"Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: NIPS, pp. 3320\u20133328 (2014)"},{"issue":"8","key":"1043_CR17","doi-asserted-by":"publisher","first-page":"1929","DOI":"10.1007\/s00138-014-0596-3","volume":"25","author":"I Guyon","year":"2014","unstructured":"Guyon, I., Athitsos, V., Jangyodsuk, P., Escalante, H.J.: The chalearn gesture dataset (CGD 2011). Mach. Vis. Appl. 25(8), 1929\u20131951 (2014)","journal-title":"Mach. Vis. Appl."},{"key":"1043_CR18","doi-asserted-by":"crossref","unstructured":"Wu, D., Zhu, F., Shao, L.: One shot learning gesture recognition from RGBD images. In: CVPR, pp. 7\u201312 (2012)","DOI":"10.1145\/2393347.2396454"},{"key":"1043_CR19","doi-asserted-by":"publisher","first-page":"31","DOI":"10.1007\/978-3-642-38628-2_4","volume-title":"Pattern Recognition and Image Analysis","author":"Sean Ryan Fanello","year":"2013","unstructured":"Fanello, S.R., Gori, I., Metta, G., Odone, F.: One-shot learning for real-time action recognition. In: Iberian Conference on Pattern Recognition and Image Analysis, pp. 31\u201340 (2013)"},{"key":"1043_CR20","unstructured":"Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp. 886\u2013893 (2005)"},{"issue":"1","key":"1043_CR21","first-page":"2549","volume":"14","author":"J Wan","year":"2013","unstructured":"Wan, J., Ruan, Q., Li, W., Deng, S.: One-shot learning gesture recognition from RGB-D data using bag of features. J. Mach. Learn. Res. 14(1), 2549\u20132582 (2013)","journal-title":"J. Mach. Learn. Res."},{"issue":"2","key":"1043_CR22","doi-asserted-by":"publisher","first-page":"1709","DOI":"10.1117\/1.JEI.23.2.023017","volume":"23","author":"J Wan","year":"2014","unstructured":"Wan, J., Ruan, Q.Q., Lei, W., An, G.Y., Zhao, R.Z.: 3D SMoSIFT: three-dimensional sparse motion scale invariant feature transform for activity recognition from RGB-D videos. J. Electron. Imaging 23(2), 1709\u20131717 (2014)","journal-title":"J. Electron. Imaging"},{"issue":"8","key":"1043_CR23","doi-asserted-by":"publisher","first-page":"1626","DOI":"10.1109\/TPAMI.2015.2513479","volume":"38","author":"J Wan","year":"2016","unstructured":"Wan, J., Guo, G., Li, S.Z.: Explore efficient local features from RGB-D data for one-shot learning gesture recognition. IEEE Trans. Pattern Anal. Mach. Intell. 38(8), 1626\u20131639 (2016)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"1043_CR24","unstructured":"Yang, W., Wang, Y., Mori, G.: Human action recognition from a single clip per action. In: ICCV, pp. 482\u2013489 (2009)"},{"issue":"15","key":"1043_CR25","doi-asserted-by":"publisher","first-page":"1780","DOI":"10.1016\/j.patrec.2012.09.014","volume":"34","author":"U Mahbub","year":"2012","unstructured":"Mahbub, U., Imtiaz, H., Roy, T., Rahman, M.S., Ahad, M.A.R.: A template matching approach of one-shot-learning gesture recognition. Pattern Recognit. Lett. 34(15), 1780\u20131788 (2012)","journal-title":"Pattern Recognit. Lett."},{"key":"1043_CR26","unstructured":"Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NIPS, pp. 568\u2013576 (2014)"},{"key":"1043_CR27","doi-asserted-by":"publisher","first-page":"20","DOI":"10.1007\/978-3-319-46484-8_2","volume-title":"Computer Vision \u2013 ECCV 2016","author":"Limin Wang","year":"2016","unstructured":"Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., Van Gool, L.: Temporal segment networks: towards good practices for deep action recognition. In: ECCV, pp. 20\u201336 (2016)"},{"key":"1043_CR28","unstructured":"Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, pp. 448\u2013456 (2015)"},{"key":"1043_CR29","doi-asserted-by":"crossref","unstructured":"Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: CVPR, pp. 1933\u20131941 (2016)","DOI":"10.1109\/CVPR.2016.213"},{"key":"1043_CR30","unstructured":"Duan, J., Zhou, S., Wan, J., Guo, X., Li, S.Z.: Multi-modality fusion based on consensus-voting and 3D convolution for isolated gesture recognition. arXiv preprint. \n arXiv:1611.06689\n \n (2016)"},{"key":"1043_CR31","doi-asserted-by":"crossref","unstructured":"Zhu, G., Zhang, L., Mei, L., Shao, J., Song, J., Shen. P.: Large-scale isolated gesture recognition using pyramidal 3d convolutional networks. In: ICPR, pp. 19\u201324 (2016)","DOI":"10.1109\/ICPR.2016.7899601"},{"key":"1043_CR32","unstructured":"Tran, D., Ray, J., Shou, Z., Chang, S.-F., Paluri, M.: Convnet architecture search for spatiotemporal feature learning. arXiv preprint. \n arXiv:1708.05038\n \n (2017)"},{"key":"1043_CR33","doi-asserted-by":"crossref","unstructured":"Miao, Q., Li, Y., Ouyang, W., Ma, Z., Xu, X., Shi, W., Cao, X.: Multimodal gesture recognition based on the ResC3D network. In: CVPR, pp. 3047\u20133055 (2017)","DOI":"10.1109\/ICCVW.2017.360"},{"key":"1043_CR34","doi-asserted-by":"crossref","unstructured":"Molchanov, P., Gupta, S., Kim, K., Pulli, K.: Multi-sensor system for driver\u2019s hand-gesture recognition. In: IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, pp. 1\u20138 (2015)","DOI":"10.1109\/FG.2015.7163132"},{"key":"1043_CR35","doi-asserted-by":"publisher","first-page":"4517","DOI":"10.1109\/ACCESS.2017.2684186","volume":"5","author":"G Zhu","year":"2017","unstructured":"Zhu, G., Zhang, L., Shen, P., Song, J.: Multimodal gesture recognition using 3d convolution and convolutional lstm. IEEE Access 5, 4517\u20134524 (2017)","journal-title":"IEEE Access"},{"key":"1043_CR36","doi-asserted-by":"crossref","unstructured":"Zhang, L., Zhu, G., Shen, P., Song, J.: Learning spatiotemporal features using 3DCNN and convolutional LSTM for gesture recognition. In: ICCV, pp. 3120\u20133128 (2017)","DOI":"10.1109\/ICCVW.2017.369"},{"key":"1043_CR37","unstructured":"Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: ICML (2015)"},{"key":"1043_CR38","doi-asserted-by":"crossref","unstructured":"Xu, Z., Zhu, L., Yang, Y.: Few-shot object recognition from machine-labeled web images. In: CVPR, pp. 5358\u20135366 (2016)","DOI":"10.1109\/CVPR.2017.569"},{"key":"1043_CR39","doi-asserted-by":"crossref","unstructured":"Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR, pp. 580\u2013587 (2014)","DOI":"10.1109\/CVPR.2014.81"},{"key":"1043_CR40","doi-asserted-by":"crossref","unstructured":"Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 640\u2013651 (2015)","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"1043_CR41","doi-asserted-by":"crossref","unstructured":"Zagoruyko, S., Komodakis, N.: Wide residual networks. In: BMVC (2016)","DOI":"10.5244\/C.30.87"},{"key":"1043_CR42","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770\u2013778 (2015)","DOI":"10.1109\/CVPR.2016.90"},{"issue":"10","key":"1043_CR43","doi-asserted-by":"publisher","first-page":"1345","DOI":"10.1109\/TKDE.2009.191","volume":"22","author":"SJ Pan","year":"2010","unstructured":"Pan, S.J., Yang, Q.: A survey on transfer learning. Knowledge and Data Engineering. IEEE Trans. Knowl. Data Eng. 22(10), 1345\u20131359 (2010)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"7","key":"1043_CR44","doi-asserted-by":"publisher","first-page":"793","DOI":"10.1007\/s00138-017-0846-2","volume":"28","author":"L Zhuo","year":"2017","unstructured":"Zhuo, L., Jiang, L., Zhu, Z., Li, J., Zhang, J., Long, H.: Vehicle classification for large scale traffic surveillance videos using convolutional neural networks. Mach. Vis. Appl. 28(7), 793\u2013802 (2017)","journal-title":"Mach. Vis. Appl."},{"key":"1043_CR45","unstructured":"Lin, M., Chen, Q., Yan, S.C.: Network in network. In: International Conference on Learning Representations, abs\/1312.4400 (2014). \n arXiv:1312.4400"},{"issue":"6","key":"1043_CR46","doi-asserted-by":"publisher","first-page":"2368","DOI":"10.1109\/TITS.2014.2337331","volume":"15","author":"E Ohn-Bar","year":"2014","unstructured":"Ohn-Bar, E., Trivedi, M.M.: Hand gesture recognition in real-time for automotive interfaces: a multimodal vision-based approach and evaluations. IEEE Trans. Intell. Transport Syst. 15(6), 2368\u20132377 (2014)","journal-title":"IEEE Trans. Intell. Transport Syst."},{"key":"1043_CR47","doi-asserted-by":"crossref","unstructured":"Oreifej, O., Liu, Z.: Hon4d: histogram of oriented 4d normals for activity recognition from depth sequences. In: CVPR, pp. 716\u2013723 (2013)","DOI":"10.1109\/CVPR.2013.98"},{"issue":"1","key":"1043_CR48","doi-asserted-by":"publisher","first-page":"60","DOI":"10.1007\/s11263-012-0594-8","volume":"103","author":"H Wang","year":"2013","unstructured":"Wang, H., Kl\u00e4ser, A., Schmid, C., Liu, C.L.: Dense trajectories and motion boundary descriptors for action recognition. Int. J. Comput. Vis. 103(1), 60\u201379 (2013)","journal-title":"Int. J. Comput. Vis."},{"key":"1043_CR49","doi-asserted-by":"crossref","unstructured":"Klaser, A., Marszalek, M., Schmid, C.: A spatio-temporal descriptor based on 3d-gradients. In: BMVC 2008\u201419th British Machine Vision Conference, pp. 1\u201310 (2008)","DOI":"10.5244\/C.22.99"},{"key":"1043_CR50","doi-asserted-by":"crossref","unstructured":"Hadfield, S., Bowden, R.: Hollywood 3d: recognizing actions in 3d natural scenes. In: CVPR, pp. 3398\u20133405 (2013)","DOI":"10.1109\/CVPR.2013.436"},{"issue":"8","key":"1043_CR51","doi-asserted-by":"publisher","first-page":"1213","DOI":"10.1007\/s00138-016-0767-5","volume":"27","author":"FM Castro","year":"2016","unstructured":"Castro, F.M., Mar\u00edn-Jim\u00e9nez, M.J., Guil, N.: Multimodal features fusion for gait, gender and shoes recognition. Mach. Vis. Appl. 27(8), 1213\u20131228 (2016)","journal-title":"Mach. Vis. Appl."},{"issue":"4","key":"1043_CR52","doi-asserted-by":"publisher","first-page":"601","DOI":"10.1007\/s00138-018-0919-x","volume":"29","author":"C Zhang","year":"2018","unstructured":"Zhang, C., Yan, J., Li, C., Hu, H., Bie, R.: End-to-end learning for image-based air quality level estimation. Mach. Vis. Appl. 29(4), 601\u2013615 (2018)","journal-title":"Mach. Vis. Appl."},{"key":"1043_CR53","unstructured":"Liu, L., Shao, L.: Learning discriminative representations from RGB-D video data. In: International Joint Conference on Artificial Intelligence, pp. 1493\u20131500 (2013)"},{"key":"1043_CR54","doi-asserted-by":"crossref","unstructured":"Choi, H., Park, H.: A hierarchical structure for gesture recognition using RGB-D sensor. In: Proc. 2nd Int. Conf. Human-Agent Interact. pp. 265\u2013268 (2014)","DOI":"10.1145\/2658861.2658938"},{"key":"1043_CR55","doi-asserted-by":"crossref","unstructured":"Cirujeda, P., Binefa, X.: 4DCov: a nested covariance descriptor of spatio-temporal features for gesture recognition in depth sequences. In: Proc. 2nd Int. Conf. 3D Vis., Dec. pp. 657\u2013664 (2014)","DOI":"10.1109\/3DV.2014.10"},{"key":"1043_CR56","doi-asserted-by":"publisher","first-page":"747","DOI":"10.1016\/j.neucom.2015.11.005","volume":"175","author":"M Liu","year":"2016","unstructured":"Liu, M., Liu, H.: Depth context: a new descriptor for human activity recognition by using sole depth sequences. Neurocomputing 175, 747\u2013758 (2016)","journal-title":"Neurocomputing"},{"key":"1043_CR57","doi-asserted-by":"crossref","unstructured":"Tung, P.T., Ngoc, L.Q.: Elliptical density shape model for hand gesture recognition. In: Proc. 5th Symp. Inf. Commun. Technol. pp. 186\u2013191 (2014)","DOI":"10.1145\/2676585.2676600"},{"key":"1043_CR58","doi-asserted-by":"publisher","first-page":"682","DOI":"10.1007\/978-3-319-29451-3_54","volume":"9431","author":"N Nishida","year":"2015","unstructured":"Nishida, N., Nakayama, H.: Multimodal gesture recognition using multi-stream recurrent neural network. Image Video Technol. 9431, 682\u2013694 (2015)","journal-title":"Image Video Technol."},{"issue":"20","key":"1043_CR59","doi-asserted-by":"publisher","first-page":"20525","DOI":"10.1007\/s11042-016-3988-8","volume":"76","author":"J Zheng","year":"2017","unstructured":"Zheng, J., Feng, Z., Xu, C., Hu, J., Ge, W.: Fusing shape and spatio-temporal features for depth-based dynamic hand gesture recognition. Multimed. Tools Appl. 76(20), 20525\u201320544 (2017)","journal-title":"Multimed. Tools Appl."},{"key":"1043_CR60","doi-asserted-by":"crossref","unstructured":"Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L1 optical flow. Pattern Recognition, pp. 214\u2013223 (2007)","DOI":"10.1007\/978-3-540-74936-3_22"},{"key":"1043_CR61","doi-asserted-by":"crossref","unstructured":"Achanta, R., Hemami, S.S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: CVPR, pp. 1597\u20131604 (2009)","DOI":"10.1109\/CVPR.2009.5206596"},{"issue":"4","key":"1043_CR62","doi-asserted-by":"publisher","first-page":"427","DOI":"10.1016\/j.ipm.2009.03.002","volume":"45","author":"M Sokolova","year":"2009","unstructured":"Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inform. Process. Manag. 45(4), 427\u2013437 (2009)","journal-title":"Inform. Process. Manag."},{"key":"1043_CR63","doi-asserted-by":"publisher","first-page":"588","DOI":"10.1007\/978-3-319-54526-4_43","volume-title":"Computer Vision \u2013 ACCV 2016 Workshops","author":"Christoph K\u00e4ding","year":"2017","unstructured":"K\u00e4ding, C., Rodner, E., Freytag, A., Denzler, J.: Fine-tuning deep neural networks in continuous learning scenarios. In: Interpretation and Visualization of Deep Neural Nets, pp. 588\u2013605 (2016)"},{"key":"1043_CR64","first-page":"2579","volume":"9","author":"Lvd Maaten","year":"2008","unstructured":"Maaten, Lvd, Hinton, G.: Visualizing data using t-sne. J Mach. Learn. Res. 9, 2579\u20132605 (2008)","journal-title":"J Mach. Learn. Res."}],"container-title":["Machine Vision and Applications"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s00138-019-01043-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s00138-019-01043-7\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s00138-019-01043-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,7,30]],"date-time":"2020-07-30T23:10:56Z","timestamp":1596150656000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s00138-019-01043-7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,8,1]]},"references-count":64,"journal-issue":{"issue":"7-8","published-print":{"date-parts":[[2019,10]]}},"alternative-id":["1043"],"URL":"https:\/\/doi.org\/10.1007\/s00138-019-01043-7","relation":{},"ISSN":["0932-8092","1432-1769"],"issn-type":[{"value":"0932-8092","type":"print"},{"value":"1432-1769","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,8,1]]},"assertion":[{"value":"28 June 2018","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"29 June 2019","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"23 July 2019","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"1 August 2019","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}