{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,28]],"date-time":"2024-06-28T18:52:58Z","timestamp":1719600778084},"reference-count":43,"publisher":"Springer Science and Business Media LLC","issue":"5","license":[{"start":{"date-parts":[[2018,8,22]],"date-time":"2018-08-22T00:00:00Z","timestamp":1534896000000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"name":"Science and Technology Development Fund of Macau","award":["112\/2014\/A3","151\/2017\/A"]},{"name":"Science and Technology Development Fund of Macau","award":["152\/2017\/A"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Machine Vision and Applications"],"published-print":{"date-parts":[[2019,7]]},"DOI":"10.1007\/s00138-018-0969-0","type":"journal-article","created":{"date-parts":[[2018,8,22]],"date-time":"2018-08-22T05:49:02Z","timestamp":1534916942000},"page":"889-900","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["Abnormal gesture recognition based on multi-model fusion strategy"],"prefix":"10.1007","volume":"30","author":[{"given":"Chi","family":"Lin","sequence":"first","affiliation":[]},{"given":"Xuxin","family":"Lin","sequence":"additional","affiliation":[]},{"given":"Yiliang","family":"Xie","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5780-8540","authenticated-orcid":false,"given":"Yanyan","family":"Liang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,8,22]]},"reference":[{"key":"969_CR1","doi-asserted-by":"crossref","unstructured":"Schl\u00f6mer, T., Poppinga, B., Henze, N., Boll, S.: Gesture recognition with a WII controller. In: Proceedings of the 2nd International Conference on Tangible and Embedded Interaction, pp. 11\u201314. ACM (2008)","DOI":"10.1145\/1347390.1347395"},{"key":"969_CR2","unstructured":"Wilson, A.D.: Surface UI for gesture-based interaction. US Patent 8,560,972, 15 Oct. 2013"},{"issue":"6","key":"969_CR3","doi-asserted-by":"publisher","first-page":"2368","DOI":"10.1109\/TITS.2014.2337331","volume":"15","author":"E Ohn-Bar","year":"2014","unstructured":"Ohn-Bar, E., Trivedi, M.M.: Hand gesture recognition in real time for automotive interfaces: a multimodal vision-based approach and evaluations. IEEE Trans. Intell. Transp. Syst. 15(6), 2368\u20132377 (2014)","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"969_CR4","unstructured":"Avci, A., Bosch, S., Marin-Perianu, M., Marin-Perianu, R., Havinga, P.: Activity recognition using inertial sensing for healthcare, wellbeing and sports applications: a survey. In: Proceedings of the 23rd International Conference on Architecture of Computing Systems (ARCS), VDE, vol. 2010, pp. 1\u201310 (2010)"},{"issue":"3","key":"969_CR5","doi-asserted-by":"publisher","first-page":"311","DOI":"10.1109\/TSMCC.2007.893280","volume":"37","author":"S Mitra","year":"2007","unstructured":"Mitra, S., Acharya, T.: Gesture recognition: a survey. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37(3), 311\u2013324 (2007)","journal-title":"IEEE Trans. Syst. Man Cybern. Part C Appl. Rev."},{"key":"969_CR6","doi-asserted-by":"crossref","unstructured":"Liu, Z., Chai, X., Liu, Z., Chen, X.: Continuous gesture recognition with hand-oriented spatiotemporal feature. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3056\u20133064 (2017)","DOI":"10.1109\/ICCVW.2017.361"},{"key":"969_CR7","doi-asserted-by":"crossref","unstructured":"Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., Van Gool, L.: Temporal segment networks: towards good practices for deep action recognition. In: European Conference on Computer Vision, pp. 20\u201336. Springer, Berlin (2016)","DOI":"10.1007\/978-3-319-46484-8_2"},{"issue":"1s","key":"969_CR8","first-page":"21","volume":"14","author":"J Duan","year":"2018","unstructured":"Duan, J., Wan, J., Zhou, S., Guo, X., Li, S.Z.: A unified framework for multi-modal isolated gesture recognition. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 14(1s), 21 (2018)","journal-title":"ACM Trans. Multimed. Comput. Commun. Appl. (TOMM)"},{"key":"969_CR9","doi-asserted-by":"crossref","unstructured":"Wan, J., Ruan, Q., An, G., Li, W.: Gesture recognition based on hidden Markov model from sparse representative observations. In: Proceedings of the 2012 IEEE 11th International Conference on Signal Processing (ICSP), vol.\u00a02, pp. 1180\u20131183. IEEE (2012)","DOI":"10.1109\/ICoSP.2012.6491787"},{"issue":"8","key":"969_CR10","doi-asserted-by":"publisher","first-page":"1626","DOI":"10.1109\/TPAMI.2015.2513479","volume":"38","author":"J Wan","year":"2016","unstructured":"Wan, J., Guo, G., Li, S.Z.: Explore efficient local features from RGB-D data for one-shot learning gesture recognition. IEEE Trans. Pattern Anal. Mach. Intell. 38(8), 1626\u20131639 (2016)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"2","key":"969_CR11","doi-asserted-by":"publisher","first-page":"023017","DOI":"10.1117\/1.JEI.23.2.023017","volume":"23","author":"J Wan","year":"2014","unstructured":"Wan, J., Ruan, Q., Li, W., An, G., Zhao, R.: 3d smosift: three-dimensional sparse motion scale invariant feature transform for activity recognition from RGB-D videos. J. Electron. Imaging 23(2), 023017 (2014)","journal-title":"J. Electron. Imaging"},{"key":"969_CR12","doi-asserted-by":"crossref","unstructured":"Klaser, A., Marsza\u0142ek, M., Schmid, C.: A spatio-temporal descriptor based on 3D-gradients. In: BMVC 2008-19th British Machine Vision Conference, pp. 275\u20131. British Machine Vision Association (2008)","DOI":"10.5244\/C.22.99"},{"key":"969_CR13","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097\u20131105 (2012)"},{"key":"969_CR14","doi-asserted-by":"crossref","unstructured":"Wang, P., Li, W., Liu, S., Gao, Z., Tang, C., Ogunbona, P.: Large-scale isolated gesture recognition using convolutional neural networks. In: Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 7\u201312. IEEE (2016)","DOI":"10.1109\/ICPR.2016.7899599"},{"key":"969_CR15","doi-asserted-by":"crossref","unstructured":"Wang, H., Wang, P., Song, Z., Li, W.: Large-scale multimodal gesture recognition using heterogeneous networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3129\u20133137 (2017)","DOI":"10.1109\/ICCVW.2017.370"},{"issue":"4","key":"969_CR16","doi-asserted-by":"publisher","first-page":"773","DOI":"10.1109\/TPAMI.2016.2558148","volume":"39","author":"B Fernando","year":"2017","unstructured":"Fernando, B., Gavves, E., Oramas, J., Ghodrati, A., Tuytelaars, T.: Rank pooling for action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 773\u2013787 (2017)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"969_CR17","doi-asserted-by":"crossref","unstructured":"Bilen, H., Fernando, B., Gavves, E., Vedaldi, A., Gould, S.: Dynamic image networks for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3034\u20133042 (2016)","DOI":"10.1109\/CVPR.2016.331"},{"key":"969_CR18","first-page":"1","volume":"126","author":"L Pigou","year":"2015","unstructured":"Pigou, L., Van Den Oord, A., Dieleman, S., Van Herreweghe, M., Dambre, J.: Beyond temporal pooling: Recurrence and temporal convolutions for gesture recognition in video. Int. J. Comput. Vis. 126, 1\u201310 (2015)","journal-title":"Int. J. Comput. Vis."},{"key":"969_CR19","doi-asserted-by":"crossref","unstructured":"Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), pp. 4489\u20134497. IEEE (2015)","DOI":"10.1109\/ICCV.2015.510"},{"key":"969_CR20","doi-asserted-by":"crossref","unstructured":"Miao, Q., Li, Y., Ouyang, W., Ma, Z., Xu, X., Shi, W., Cao, X., Liu, Z., Chai, X., Liu, Z. etal.: Multimodal gesture recognition based on the resc3d network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3047\u20133055 (2017)","DOI":"10.1109\/ICCVW.2017.360"},{"key":"969_CR21","doi-asserted-by":"crossref","unstructured":"Escalante, H.J., Ponce-L\u00f3pez, V., Wan, J., Riegler, M.A., Chen, B., Clap\u00e9s, A., Escalera, S., Guyon, I., Bar\u00f3, X., Halvorsen, P. et al.: Chalearn joint contest on multimedia challenges beyond visual analysis: an overview. In: Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 67\u201373. IEEE (2016)","DOI":"10.1109\/ICPR.2016.7899609"},{"key":"969_CR22","doi-asserted-by":"crossref","unstructured":"Wan, J., Escalera, S., Baro, X., Escalante, H.J., Guyon, I., Madadi, M., Allik, J., Gorbova, J., Anbarjafari, G.: Results and analysis of chalearn lap multi-modal isolated and continuous gesture recognition, and real versus fake expressed emotions challenges. In: ChaLearn LaP, Action, Gesture, and Emotion Recognition Workshop and Competitions: Large Scale Multimodal Gesture Recognition and Real versus Fake expressed emotions, ICCV, vol. 4, no. 6 (2017)","DOI":"10.1109\/ICCVW.2017.377"},{"key":"969_CR23","doi-asserted-by":"crossref","unstructured":"Camgoz, N.C., Hadfield, S., Koller, O., Bowden, R.: Using convolutional 3D neural networks for user-independent continuous gesture recognition. In: Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 49\u201354. IEEE (2016)","DOI":"10.1109\/ICPR.2016.7899606"},{"key":"969_CR24","doi-asserted-by":"crossref","unstructured":"Zhang, L., Zhu, G., Shen, P., Song, J., Shah, S.A., Bennamoun, M.: Learning spatiotemporal features using 3DCNN and convolutional LSTM for gesture recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3120\u20133128 (2017)","DOI":"10.1109\/ICCVW.2017.369"},{"key":"969_CR25","doi-asserted-by":"crossref","unstructured":"Chai, X., Liu, Z., Yin, F., Liu, Z., Chen, X.: Two streams recurrent neural networks for large-scale continuous gesture recognition. In: Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 31\u201336. IEEE (2016)","DOI":"10.1109\/ICPR.2016.7899603"},{"issue":"1","key":"969_CR26","first-page":"2549","volume":"14","author":"J Wan","year":"2013","unstructured":"Wan, J., Ruan, Q., Li, W., Deng, S.: One-shot learning gesture recognition from RGB-D data using bag of features. J. Mach. Learn. Res. 14(1), 2549\u20132582 (2013)","journal-title":"J. Mach. Learn. Res."},{"issue":"1","key":"969_CR27","doi-asserted-by":"publisher","first-page":"167","DOI":"10.1007\/s10044-015-0481-3","volume":"20","author":"HJ Escalante","year":"2017","unstructured":"Escalante, H.J., Guyon, I., Athitsos, V., Jangyodsuk, P., Wan, J.: Principal motion components for one-shot gesture recognition. Pattern Anal. Appl. 20(1), 167\u2013182 (2017)","journal-title":"Pattern Anal. Appl."},{"key":"969_CR28","doi-asserted-by":"crossref","unstructured":"Cabrera, M.E., Sanchez-Tamayo, N., Voyles, R., Wachs, J.P.: One-shot gesture recognition: one step towards adaptive learning. In Proceedings of the 2017 12th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2017), pp. 784\u2013789. IEEE (2017)","DOI":"10.1109\/FG.2017.98"},{"key":"969_CR29","doi-asserted-by":"publisher","first-page":"8","DOI":"10.3389\/frobt.2017.00008","volume":"4","author":"ME Cabrera","year":"2017","unstructured":"Cabrera, M.E., Wachs, J.P.: A human-centered approach to one-shot gesture learning. Front. Robot. AI 4, 8 (2017)","journal-title":"Front. Robot. AI"},{"key":"969_CR30","unstructured":"Cabrera, M., Voyles, R., Wachs, J.: Coherency in one-shot gesture recognition. arXiv preprint \n arXiv:1701.05924\n \n (2017)"},{"key":"969_CR31","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"969_CR32","unstructured":"Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448\u2013456 (2015)"},{"issue":"11","key":"969_CR33","doi-asserted-by":"publisher","first-page":"2673","DOI":"10.1109\/78.650093","volume":"45","author":"M Schuster","year":"1997","unstructured":"Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Tran. Signal Process. 45(11), 2673\u20132681 (1997)","journal-title":"IEEE Tran. Signal Process."},{"key":"969_CR34","doi-asserted-by":"crossref","unstructured":"Simon, T., Joo, H., Matthews, I., Sheikh, Y.: Hand keypoint detection in single images using multiview bootstrapping. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2 (2017)","DOI":"10.1109\/CVPR.2017.494"},{"key":"969_CR35","doi-asserted-by":"crossref","unstructured":"Wei, S.-E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4724\u20134732 (2016)","DOI":"10.1109\/CVPR.2016.511"},{"key":"969_CR36","doi-asserted-by":"crossref","unstructured":"Guo, J., Zhou, S., Wu, J., Wan, J., Zhu, X., Lei, Z., Li, S.Z.: Multi-modality network with visual and geometrical information for micro emotion recognition. In: Proceedings of the 2017 12th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2017), pp. 814\u2013819. IEEE (2017)","DOI":"10.1109\/FG.2017.103"},{"key":"969_CR37","unstructured":"Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91\u201399 (2015)"},{"key":"969_CR38","doi-asserted-by":"crossref","unstructured":"Wan, J., Zhao, Y., Zhou, S., Guyon, I., Escalera, S., Li, S.Z.: Chalearn looking at people RGB-D isolated and continuous datasets for gesture recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 56\u201364 (2016)","DOI":"10.1109\/CVPRW.2016.100"},{"key":"969_CR39","doi-asserted-by":"publisher","first-page":"193","DOI":"10.1007\/978-1-4471-4640-7_10","volume-title":"Consumer Depth Cameras for Computer Vision","author":"B Ni","year":"2013","unstructured":"Ni, B., Wang, G., Moulin, P.: RGBD-hudaact: a color-depth video database for human daily activity recognition. In: Andrea, F., Juergen, G., Helmut, G., Xiaofeng, R., Kurt, K. (eds.) Consumer Depth Cameras for Computer Vision, pp. 193\u2013208. Springer, Berlin (2013)"},{"issue":"8","key":"969_CR40","doi-asserted-by":"publisher","first-page":"1929","DOI":"10.1007\/s00138-014-0596-3","volume":"25","author":"I Guyon","year":"2014","unstructured":"Guyon, I., Athitsos, V., Jangyodsuk, P., Escalante, H.J.: The ChaLearn gesture dataset (CGD 2011). Mach. Vision Appl. 25(8), 1929\u20131951 (2014)","journal-title":"Mach. Vision Appl."},{"key":"969_CR41","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint \n arXiv:1412.6980\n \n (2014)"},{"issue":"2\u20133","key":"969_CR42","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1007\/s11263-005-1838-7","volume":"64","author":"I Laptev","year":"2005","unstructured":"Laptev, I.: On space-time interest points. Int. J. Comput. Vis. 64(2\u20133), 107\u2013123 (2005)","journal-title":"Int. J. Comput. Vis."},{"key":"969_CR43","unstructured":"Davis, J.W., Bobick, A.F.: The representation and recognition of human movement using temporal templates. In: Proceedings of the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 928\u2013934. IEEE (1997)"}],"container-title":["Machine Vision and Applications"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s00138-018-0969-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s00138-018-0969-0\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s00138-018-0969-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,8,21]],"date-time":"2019-08-21T23:12:54Z","timestamp":1566429174000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s00138-018-0969-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,8,22]]},"references-count":43,"journal-issue":{"issue":"5","published-print":{"date-parts":[[2019,7]]}},"alternative-id":["969"],"URL":"https:\/\/doi.org\/10.1007\/s00138-018-0969-0","relation":{},"ISSN":["0932-8092","1432-1769"],"issn-type":[{"value":"0932-8092","type":"print"},{"value":"1432-1769","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,8,22]]},"assertion":[{"value":"5 April 2018","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"5 July 2018","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"21 July 2018","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"22 August 2018","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}