{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T18:55:44Z","timestamp":1726253744353},"publisher-location":"Singapore","reference-count":6,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789819990047"},{"type":"electronic","value":"9789819990054"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-981-99-9005-4_56","type":"book-chapter","created":{"date-parts":[[2024,3,30]],"date-time":"2024-03-30T16:02:03Z","timestamp":1711814523000},"page":"445-452","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Comparative Analysis of Deep Learning-Based Abdominal Multivisceral Segmentation"],"prefix":"10.1007","author":[{"given":"Junting","family":"Zou","sequence":"first","affiliation":[]},{"given":"Mohd Rizal","family":"Arshad","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,3,31]]},"reference":[{"key":"56_CR1","doi-asserted-by":"publisher","unstructured":"Okada T et al (2012) Multi-organ segmentation in abdominal CT images. In: Annual international conference of the IEEE engineering in medicine and biology society, San Diego, CA, pp 3986\u20133989. https:\/\/doi.org\/10.1109\/EMBC.2012.6346840","DOI":"10.1109\/EMBC.2012.6346840"},{"issue":"9","key":"56_CR2","doi-asserted-by":"publisher","first-page":"1723","DOI":"10.1109\/TMI.2013.2265805","volume":"32","author":"R Wolz","year":"2013","unstructured":"Wolz R, Chu C, Misawa K, Fujiwara M, Mori K, Rueckert D (2013) Automated abdominal multi-organ segmentation with subject-specific atlas generation. IEEE Trans Med Imaging 32(9):1723\u20131730. https:\/\/doi.org\/10.1109\/TMI.2013.2265805","journal-title":"IEEE Trans Med Imaging"},{"key":"56_CR3","doi-asserted-by":"publisher","first-page":"582","DOI":"10.1007\/s10278-019-00227-x","volume":"32","author":"MH Hesamian","year":"2019","unstructured":"Hesamian MH, Jia W, He X et al (2019) Deep learning techniques for medical image segmentation: achievements and challenges. J Digit Imaging 32:582\u2013596. https:\/\/doi.org\/10.1007\/s10278-019-00227-x","journal-title":"J Digit Imaging"},{"key":"56_CR4","doi-asserted-by":"publisher","first-page":"179656","DOI":"10.1109\/ACCESS.2020.3025372","volume":"8","author":"T Fan","year":"2020","unstructured":"Fan T, Wang G, Li Y, Wang H (2020) MA-Net: a multi-scale attention network for liver and tumor segmentation. IEEE Access 8:179656\u2013179665. https:\/\/doi.org\/10.1109\/ACCESS.2020.3025372","journal-title":"IEEE Access"},{"key":"56_CR5","doi-asserted-by":"publisher","first-page":"82031","DOI":"10.1109\/ACCESS.2021.3086020","volume":"9","author":"N Siddique","year":"2021","unstructured":"Siddique N, Paheding S, Elkin CP, Devabhaktuni V (2021) U-Net and its variants for medical image segmentation: a review of theory and applications. IEEE Access 9:82031\u201382057. https:\/\/doi.org\/10.1109\/ACCESS.2021.3086020","journal-title":"IEEE Access"},{"key":"56_CR6","unstructured":"CHAOS\u2014Grand Challenge (n.d.) Grand. https:\/\/chaos.grand-challenge.org\/Data\/. Accessed 13 Apr 2023"}],"container-title":["Lecture Notes in Electrical Engineering","Proceedings of the 12th International Conference on Robotics, Vision, Signal Processing and Power Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-99-9005-4_56","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,30]],"date-time":"2024-03-30T16:05:56Z","timestamp":1711814756000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-99-9005-4_56"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9789819990047","9789819990054"],"references-count":6,"URL":"https:\/\/doi.org\/10.1007\/978-981-99-9005-4_56","relation":{},"ISSN":["1876-1100","1876-1119"],"issn-type":[{"type":"print","value":"1876-1100"},{"type":"electronic","value":"1876-1119"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"31 March 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"RoViSP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Robotics, Vision, Signal Processing and Power Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 April 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6 April 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"rovisp2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}