{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T14:12:12Z","timestamp":1742911932409,"version":"3.40.3"},"publisher-location":"Singapore","reference-count":41,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789819985425"},{"type":"electronic","value":"9789819985432"}],"license":[{"start":{"date-parts":[[2023,12,29]],"date-time":"2023-12-29T00:00:00Z","timestamp":1703808000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,12,29]],"date-time":"2023-12-29T00:00:00Z","timestamp":1703808000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-981-99-8543-2_3","type":"book-chapter","created":{"date-parts":[[2023,12,28]],"date-time":"2023-12-28T10:03:03Z","timestamp":1703757783000},"page":"28-41","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Data-Free Low-Bit Quantization via\u00a0Dynamic Multi-teacher Knowledge Distillation"],"prefix":"10.1007","author":[{"given":"Chong","family":"Huang","sequence":"first","affiliation":[]},{"given":"Shaohui","family":"Lin","sequence":"additional","affiliation":[]},{"given":"Yan","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Ke","family":"Li","sequence":"additional","affiliation":[]},{"given":"Baochang","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,12,29]]},"reference":[{"key":"3_CR1","unstructured":"Ba, J., Caruana, R.: Do deep nets really need to be deep? In: NeurIPS (2014)"},{"key":"3_CR2","unstructured":"Banner, R., Nahshan, Y., Soudry, D.: Post training 4-bit quantization of convolutional networks for rapid-deployment. In: NeurIPS, vol.\u00a032 (2019)"},{"key":"3_CR3","doi-asserted-by":"crossref","unstructured":"Cai, Y., Yao, Z., Dong, Z., Gholami, A., Mahoney, M.W., Keutzer, K.: ZeroQ: a novel zero shot quantization framework. In: CVPR, pp. 13169\u201313178 (2020)","DOI":"10.1109\/CVPR42600.2020.01318"},{"key":"3_CR4","doi-asserted-by":"crossref","unstructured":"Chen, H., et al.: Data-free learning of student networks. In: ICCV (2019)","DOI":"10.1109\/ICCV.2019.00361"},{"key":"3_CR5","unstructured":"Choi, J., Wang, Z., Venkataramani, S., Chuang, P.I.J., Srinivasan, V., Gopalakrishnan, K.: Pact: parameterized clipping activation for quantized neural networks. arXiv preprint arXiv:1805.06085 (2018)"},{"key":"3_CR6","unstructured":"Choi, K., Hong, D., Park, N., Kim, Y., Lee, J.: Qimera: data-free quantization with synthetic boundary supporting samples. In: NeurIPS, vol.\u00a034, pp. 14835\u201314847 (2021)"},{"key":"3_CR7","doi-asserted-by":"crossref","unstructured":"Choi, K., et al.: It\u2019s all in the teacher: zero-shot quantization brought closer to the teacher. In: CVPR, pp. 8311\u20138321 (2022)","DOI":"10.1109\/CVPR52688.2022.00813"},{"key":"3_CR8","doi-asserted-by":"crossref","unstructured":"Choi, Y., Choi, J., El-Khamy, M., Lee, J.: Data-free network quantization with adversarial knowledge distillation. In: CVPR Workshops (2020)","DOI":"10.1109\/CVPRW50498.2020.00363"},{"key":"3_CR9","unstructured":"Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks: training deep neural networks with weights and activations constrained to +1 or -1. arXiv preprint arXiv:1602.02830 (2016)"},{"key":"3_CR10","doi-asserted-by":"crossref","unstructured":"Gong, L., et al.: Adaptive hierarchy-branch fusion for online knowledge distillation. In: AAAI (2023)","DOI":"10.1609\/aaai.v37i6.25937"},{"key":"3_CR11","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"3_CR12","unstructured":"Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)"},{"key":"3_CR13","doi-asserted-by":"crossref","unstructured":"Jacob, B., et al.: Quantization and training of neural networks for efficient integer-arithmetic-only inference. In: CVPR, pp. 2704\u20132713 (2018)","DOI":"10.1109\/CVPR.2018.00286"},{"key":"3_CR14","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)"},{"key":"3_CR15","unstructured":"Krizhevsky, A., Hinton, G., et\u00a0al.: Learning multiple layers of features from tiny images (2009)"},{"key":"3_CR16","doi-asserted-by":"crossref","unstructured":"Li, Y., et al.: Micronet: improving image recognition with extremely low flops. In: ICCV, pp. 468\u2013477 (2021)","DOI":"10.1109\/ICCV48922.2021.00052"},{"key":"3_CR17","doi-asserted-by":"crossref","unstructured":"Liu, Y., Zhang, W., Wang, J.: Zero-shot adversarial quantization. In: CVPR (2021)","DOI":"10.1109\/CVPR46437.2021.00156"},{"key":"3_CR18","unstructured":"Lopes, R.G., Fenu, S., Starner, T.: Data-free knowledge distillation for deep neural networks. arXiv preprint arXiv:1710.07535 (2017)"},{"key":"3_CR19","unstructured":"Nagel, M., Amjad, R.A., Van\u00a0Baalen, M., Louizos, C., Blankevoort, T.: Up or down? Adaptive rounding for post-training quantization. In: ICML, pp. 7197\u20137206 (2020)"},{"key":"3_CR20","doi-asserted-by":"crossref","unstructured":"Nagel, M., Baalen, M.V., Blankevoort, T., Welling, M.: Data-free quantization through weight equalization and bias correction. In: ICCV, pp. 1325\u20131334 (2019)","DOI":"10.1109\/ICCV.2019.00141"},{"key":"3_CR21","unstructured":"Nayak, G.K., Mopuri, K.R., Shaj, V., Radhakrishnan, V.B., Chakraborty, A.: Zero-shot knowledge distillation in deep networks. In: ICML, pp. 4743\u20134751 (2019)"},{"key":"3_CR22","unstructured":"Paszke, A., Gross, S., Chintala, S., Chanan, G.: Pytorch: tensors and dynamic neural networks in python with strong GPU acceleration. PyTorch 6(3), 67 (2017)"},{"key":"3_CR23","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"525","DOI":"10.1007\/978-3-319-46493-0_32","volume-title":"Computer Vision \u2013 ECCV 2016","author":"M Rastegari","year":"2016","unstructured":"Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525\u2013542. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46493-0_32"},{"key":"3_CR24","unstructured":"Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeurIPS, pp. 91\u201399 (2015)"},{"key":"3_CR25","unstructured":"Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets: hints for thin deep nets. In: ICLR (2015)"},{"key":"3_CR26","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","volume":"115","author":"O Russakovsky","year":"2015","unstructured":"Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. IJCV 115, 211\u2013252 (2015)","journal-title":"IJCV"},{"key":"3_CR27","doi-asserted-by":"crossref","unstructured":"Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: inverted residuals and linear bottlenecks. In: CVPR, pp. 4510\u20134520 (2018)","DOI":"10.1109\/CVPR.2018.00474"},{"key":"3_CR28","unstructured":"Tailor, S.A., Fernandez-Marques, J., Lane, N.D.: Degree-quant: quantization-aware training for graph neural networks. arXiv preprint arXiv:2008.05000 (2020)"},{"key":"3_CR29","unstructured":"Wang, P., Chen, Q., He, X., Cheng, J.: Towards accurate post-training network quantization via bit-split and stitching. In: ICML, pp. 9847\u20139856 (2020)"},{"key":"3_CR30","unstructured":"Wei, X., Gong, R., Li, Y., Liu, X., Yu, F.: QDrop: randomly dropping quantization for extremely low-bit post-training quantization. arXiv preprint arXiv:2203.05740 (2022)"},{"key":"3_CR31","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"247","DOI":"10.1007\/978-3-030-58558-7_15","volume-title":"Computer Vision \u2013 ECCV 2020","author":"L Xiang","year":"2020","unstructured":"Xiang, L., Ding, G., Han, J.: Learning from multiple experts: self-paced knowledge distillation for long-tailed classification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 247\u2013263. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58558-7_15"},{"key":"3_CR32","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/978-3-030-58610-2_1","volume-title":"Computer Vision \u2013 ECCV 2020","author":"S Xu","year":"2020","unstructured":"Xu, S., et al.: Generative low-bitwidth data free quantization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 1\u201317. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58610-2_1"},{"key":"3_CR33","doi-asserted-by":"crossref","unstructured":"Yin, H., et al.: Dreaming to distill: data-free knowledge transfer via deepinversion. In: CVPR, pp. 8715\u20138724 (2020)","DOI":"10.1109\/CVPR42600.2020.00874"},{"key":"3_CR34","doi-asserted-by":"crossref","unstructured":"You, S., Xu, C., Xu, C., Tao, D.: Learning from multiple teacher networks. In: KDD (2017)","DOI":"10.1145\/3097983.3098135"},{"key":"3_CR35","doi-asserted-by":"crossref","unstructured":"Yu, S., Chen, J., Han, H., Jiang, S.: Data-free knowledge distillation via feature exchange and activation region constraint. In: CVPR, pp. 24266\u201324275 (2023)","DOI":"10.1109\/CVPR52729.2023.02324"},{"key":"3_CR36","unstructured":"Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. In: ICLR (2017)"},{"key":"3_CR37","doi-asserted-by":"crossref","unstructured":"Zhang, X., et al.: Diversifying sample generation for accurate data-free quantization. In: CVPR, pp. 15658\u201315667 (2021)","DOI":"10.1109\/CVPR46437.2021.01540"},{"key":"3_CR38","doi-asserted-by":"crossref","unstructured":"Zhong, Y., et al.: IntraQ: learning synthetic images with intra-class heterogeneity for zero-shot network quantization. In: CVPR, pp. 12339\u201312348 (2022)","DOI":"10.1109\/CVPR52688.2022.01202"},{"key":"3_CR39","unstructured":"Zhou, P., Mai, L., Zhang, J., Xu, N., Wu, Z., Davis, L.S.: M2KD: multi-model and multi-level knowledge distillation for incremental learning. arXiv preprint arXiv:1904.01769 (2019)"},{"key":"3_CR40","unstructured":"Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., Zou, Y.: DoReFa-Net: training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160 (2016)"},{"key":"3_CR41","doi-asserted-by":"crossref","unstructured":"Zhu, B., Hofstee, P., Peltenburg, J., Lee, J., Alars, Z.: Autorecon: neural architecture search-based reconstruction for data-free compression. arXiv preprint arXiv:2105.12151 (2021)","DOI":"10.24963\/ijcai.2021\/478"}],"container-title":["Lecture Notes in Computer Science","Pattern Recognition and Computer Vision"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-99-8543-2_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,28]],"date-time":"2023-12-28T10:03:39Z","timestamp":1703757819000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-99-8543-2_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12,29]]},"ISBN":["9789819985425","9789819985432"],"references-count":41,"URL":"https:\/\/doi.org\/10.1007\/978-981-99-8543-2_3","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023,12,29]]},"assertion":[{"value":"29 December 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PRCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Chinese Conference on Pattern Recognition and Computer Vision (PRCV)","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Xiamen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 October 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 October 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ccprcv2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/prcv2023.xmu.edu.cn\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1420","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"532","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"37% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3,78","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3,69","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}