{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T15:30:10Z","timestamp":1726241410106},"publisher-location":"Singapore","reference-count":30,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789819984688"},{"type":"electronic","value":"9789819984695"}],"license":[{"start":{"date-parts":[[2023,12,25]],"date-time":"2023-12-25T00:00:00Z","timestamp":1703462400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,12,25]],"date-time":"2023-12-25T00:00:00Z","timestamp":1703462400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-981-99-8469-5_37","type":"book-chapter","created":{"date-parts":[[2023,12,24]],"date-time":"2023-12-24T17:02:18Z","timestamp":1703437338000},"page":"468-479","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["MixU-Net: Hybrid CNN-MLP Networks for\u00a0Urinary Collecting System Segmentation"],"prefix":"10.1007","author":[{"given":"Zhiyuan","family":"Liu","sequence":"first","affiliation":[]},{"given":"Mingxian","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Hao","family":"Qi","sequence":"additional","affiliation":[]},{"given":"Ming","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Kaiyun","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Song","family":"Zheng","sequence":"additional","affiliation":[]},{"given":"Jianhui","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Yinran","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Xiongbiao","family":"Luo","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,12,25]]},"reference":[{"issue":"5","key":"37_CR1","doi-asserted-by":"publisher","first-page":"1190","DOI":"10.1016\/j.eururo.2008.06.019","volume":"55","author":"A Breda","year":"2009","unstructured":"Breda, A., Ogunyemi, O., Leppert, J.T., Schulam, P.G.: Flexible ureteroscopy and laser lithotripsy for multiple unilateral intrarenal stones. Eur. Urol. 55(5), 1190\u20131197 (2009)","journal-title":"Eur. Urol."},{"key":"37_CR2","doi-asserted-by":"publisher","unstructured":"Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) Computer Vision \u2013 ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol. 13803, pp. 205\u2013218. Springer, Cham (2023). https:\/\/doi.org\/10.1007\/978-3-031-25066-8_9","DOI":"10.1007\/978-3-031-25066-8_9"},{"key":"37_CR3","unstructured":"Cardoso, M.J., et al.: MONAI: an open-source framework for deep learning in healthcare. arXiv preprint arXiv:2211.02701 (2022)"},{"key":"37_CR4","unstructured":"Chen, J., et al.: TransUNet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)"},{"issue":"10","key":"37_CR5","doi-asserted-by":"publisher","first-page":"680","DOI":"10.4111\/kju.2015.56.10.680","volume":"56","author":"SY Cho","year":"2015","unstructured":"Cho, S.Y.: Current status of flexible ureteroscopy in urology. Korean J. Urol. 56(10), 680\u2013688 (2015)","journal-title":"Korean J. Urol."},{"issue":"1","key":"37_CR6","doi-asserted-by":"publisher","first-page":"e84878","DOI":"10.1371\/journal.pone.0084878","volume":"9","author":"SY Cho","year":"2014","unstructured":"Cho, S.Y., et al.: Cumulative sum analysis for experiences of a single-session retrograde intrarenal stone surgery and analysis of predictors for stone-free status. PLoS ONE 9(1), e84878 (2014)","journal-title":"PLoS ONE"},{"key":"37_CR7","doi-asserted-by":"crossref","unstructured":"Ding, X., Zhang, X., Han, J., Ding, G.: Scaling up your kernels to 31$$\\times $$31: revisiting large kernel design in CNNs. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 11963\u201311975 (2022)","DOI":"10.1109\/CVPR52688.2022.01166"},{"key":"37_CR8","doi-asserted-by":"crossref","unstructured":"Dong, Z., et al.: MNet: rethinking 2D\/3D networks for anisotropic medical image segmentation. arXiv preprint arXiv:2205.04846 (2022)","DOI":"10.24963\/ijcai.2022\/122"},{"key":"37_CR9","unstructured":"Dosovitskiy, A., et al.: An image is worth 16$$\\times $$16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)"},{"issue":"1","key":"37_CR10","doi-asserted-by":"publisher","first-page":"18816","DOI":"10.1038\/s41598-022-23408-1","volume":"12","author":"M El-Melegy","year":"2022","unstructured":"El-Melegy, M., Kamel, R., El-Ghar, M.A., Shehata, M., Khalifa, F., El-Baz, A.: Kidney segmentation from DCE-MRI converging level set methods, fuzzy clustering and Markov random field modeling. Sci. Rep. 12(1), 18816 (2022)","journal-title":"Sci. Rep."},{"key":"37_CR11","doi-asserted-by":"publisher","unstructured":"Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin UNETR: swin transformers for semantic segmentation of brain tumors in MRI images. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol. 12962, pp. 272\u2013284. Springer (2022). https:\/\/doi.org\/10.1007\/978-3-031-08999-2_22","DOI":"10.1007\/978-3-031-08999-2_22"},{"key":"37_CR12","doi-asserted-by":"crossref","unstructured":"Hatamizadeh, A., et al.: UNETR: transformers for 3D medical image segmentation. In: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision, pp. 574\u2013584 (2022)","DOI":"10.1109\/WACV51458.2022.00181"},{"key":"37_CR13","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"37_CR14","doi-asserted-by":"publisher","first-page":"101821","DOI":"10.1016\/j.media.2020.101821","volume":"67","author":"N Heller","year":"2021","unstructured":"Heller, N., et al.: The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: results of the kits19 challenge. Med. Image Anal. 67, 101821 (2021)","journal-title":"Med. Image Anal."},{"key":"37_CR15","unstructured":"Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs). arXiv preprint arXiv:1606.08415 (2016)"},{"issue":"2","key":"37_CR16","doi-asserted-by":"publisher","first-page":"203","DOI":"10.1038\/s41592-020-01008-z","volume":"18","author":"F Isensee","year":"2021","unstructured":"Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203\u2013211 (2021)","journal-title":"Nat. Methods"},{"issue":"1","key":"37_CR17","doi-asserted-by":"publisher","first-page":"366","DOI":"10.1038\/s41598-019-57242-9","volume":"10","author":"T Kim","year":"2020","unstructured":"Kim, T., et al.: Active learning for accuracy enhancement of semantic segmentation with CNN-corrected label curations: evaluation on kidney segmentation in abdominal CT. Sci. Rep. 10(1), 366 (2020)","journal-title":"Sci. Rep."},{"key":"37_CR18","doi-asserted-by":"crossref","unstructured":"Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150\u20131157. IEEE (1999)","DOI":"10.1109\/ICCV.1999.790410"},{"key":"37_CR19","unstructured":"Luo, W., Li, Y., Urtasun, R., Zemel, R.: Understanding the effective receptive field in deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 29 (2016)"},{"issue":"7591","key":"37_CR20","doi-asserted-by":"publisher","first-page":"468","DOI":"10.1136\/bmj.39113.480185.80","volume":"334","author":"NL Miller","year":"2007","unstructured":"Miller, N.L., Lingeman, J.E.: Management of kidney stones. Bmj 334(7591), 468\u2013472 (2007)","journal-title":"Bmj"},{"key":"37_CR21","unstructured":"Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)"},{"key":"37_CR22","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"key":"37_CR23","unstructured":"Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)"},{"issue":"4","key":"37_CR24","doi-asserted-by":"publisher","first-page":"804","DOI":"10.2215\/CJN.05811108","volume":"4","author":"AD Rule","year":"2009","unstructured":"Rule, A.D., Bergstralh, E.J., Melton, L.J., Li, X., Weaver, A.L., Lieske, J.C.: Kidney stones and the risk for chronic kidney disease. Clin. J. Am. Soc. Nephrol. 4(4), 804\u2013811 (2009)","journal-title":"Clin. J. Am. Soc. Nephrol."},{"key":"37_CR25","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"463","DOI":"10.1007\/978-3-030-00937-3_53","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2018","author":"A Taha","year":"2018","unstructured":"Taha, A., Lo, P., Li, J., Zhao, T.: Kid-Net: convolution networks for kidney vessels segmentation from CT-volumes. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-L\u00f3pez, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 463\u2013471. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-00937-3_53"},{"key":"37_CR26","first-page":"24261","volume":"34","author":"IO Tolstikhin","year":"2021","unstructured":"Tolstikhin, I.O., et al.: MLP-Mixer: An all-MLP architecture for vision. Adv. Neural. Inf. Process. Syst. 34, 24261\u201324272 (2021)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"issue":"4","key":"37_CR27","doi-asserted-by":"publisher","first-page":"600","DOI":"10.1109\/TIP.2003.819861","volume":"13","author":"Z Wang","year":"2004","unstructured":"Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600\u2013612 (2004)","journal-title":"IEEE Trans. Image Process."},{"key":"37_CR28","doi-asserted-by":"crossref","unstructured":"Wu, Y., He, K.: Group normalization. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3\u201319 (2018)","DOI":"10.1007\/978-3-030-01261-8_1"},{"key":"37_CR29","doi-asserted-by":"crossref","unstructured":"Xia, K.j., Yin, H.s., Zhang, Y.d.: Deep semantic segmentation of kidney and space-occupying lesion area based on SCNN and ResNet models combined with SIFT-flow algorithm. J. Med. Syst. 43, 1\u201312 (2019)","DOI":"10.1007\/s10916-018-1116-1"},{"key":"37_CR30","unstructured":"Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)"}],"container-title":["Lecture Notes in Computer Science","Pattern Recognition and Computer Vision"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-99-8469-5_37","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,24]],"date-time":"2023-12-24T17:06:57Z","timestamp":1703437617000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-99-8469-5_37"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12,25]]},"ISBN":["9789819984688","9789819984695"],"references-count":30,"URL":"https:\/\/doi.org\/10.1007\/978-981-99-8469-5_37","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023,12,25]]},"assertion":[{"value":"25 December 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PRCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Chinese Conference on Pattern Recognition and Computer Vision (PRCV)","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Xiamen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 October 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 October 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ccprcv2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/prcv2023.xmu.edu.cn\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1420","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"532","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"37% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3,78","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3,69","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}