{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T14:51:50Z","timestamp":1742914310443,"version":"3.40.3"},"publisher-location":"Singapore","reference-count":47,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789819981779"},{"type":"electronic","value":"9789819981786"}],"license":[{"start":{"date-parts":[[2023,11,30]],"date-time":"2023-11-30T00:00:00Z","timestamp":1701302400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,11,30]],"date-time":"2023-11-30T00:00:00Z","timestamp":1701302400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-981-99-8178-6_35","type":"book-chapter","created":{"date-parts":[[2023,11,29]],"date-time":"2023-11-29T10:02:54Z","timestamp":1701252174000},"page":"457-477","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Probabilistic AutoRegressive Neural Networks for\u00a0Accurate Long-Range Forecasting"],"prefix":"10.1007","author":[{"given":"Madhurima","family":"Panja","sequence":"first","affiliation":[]},{"given":"Tanujit","family":"Chakraborty","sequence":"additional","affiliation":[]},{"given":"Uttam","family":"Kumar","sequence":"additional","affiliation":[]},{"given":"Abdenour","family":"Hadid","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,11,30]]},"reference":[{"key":"35_CR1","doi-asserted-by":"publisher","first-page":"27","DOI":"10.1016\/j.asoc.2014.05.028","volume":"23","author":"CN Babu","year":"2014","unstructured":"Babu, C.N., Reddy, B.E.: A moving-average filter based hybrid Arima-Ann model for forecasting time series data. Appl. Soft Comput. 23, 27\u201338 (2014)","journal-title":"Appl. Soft Comput."},{"issue":"4","key":"35_CR2","doi-asserted-by":"publisher","first-page":"451","DOI":"10.1057\/jors.1969.103","volume":"20","author":"JM Bates","year":"1969","unstructured":"Bates, J.M., Granger, C.W.: The combination of forecasts. J. Oper. Res. Soc. 20(4), 451\u2013468 (1969)","journal-title":"J. Oper. Res. Soc."},{"key":"35_CR3","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s11071-021-07099-3","volume":"107","author":"A Bhattacharyya","year":"2022","unstructured":"Bhattacharyya, A., Chakraborty, T., Rai, S.N.: Stochastic forecasting of COVID-19 daily new cases across countries with a novel hybrid time series model. Nonlinear Dyn. 107, 1\u201316 (2022)","journal-title":"Nonlinear Dyn."},{"key":"35_CR4","doi-asserted-by":"crossref","unstructured":"Bhattacharyya, A., Chattopadhyay, S., Pattnaik, M., Chakraborty, T.: Theta autoregressive neural network: a hybrid time series model for pandemic forecasting. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1\u20138. IEEE (2021)","DOI":"10.1109\/IJCNN52387.2021.9533747"},{"issue":"332","key":"35_CR5","doi-asserted-by":"publisher","first-page":"1509","DOI":"10.1080\/01621459.1970.10481180","volume":"65","author":"GE Box","year":"1970","unstructured":"Box, G.E., Pierce, D.A.: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. J. Am. Stat. Assoc. 65(332), 1509\u20131526 (1970)","journal-title":"J. Am. Stat. Assoc."},{"key":"35_CR6","doi-asserted-by":"publisher","first-page":"127","DOI":"10.1016\/j.physa.2018.11.061","volume":"519","author":"J Cao","year":"2019","unstructured":"Cao, J., Li, Z., Li, J.: Financial time series forecasting model based on Ceemdan and LSTM. Phys. A 519, 127\u2013139 (2019)","journal-title":"Phys. A"},{"key":"35_CR7","first-page":"1","volume":"57","author":"T Chakraborty","year":"2020","unstructured":"Chakraborty, T., Chakraborty, A.K., Biswas, M., Banerjee, S., Bhattacharya, S.: Unemployment rate forecasting: a hybrid approach. Comput. Econ. 57, 1\u201319 (2020)","journal-title":"Comput. Econ."},{"key":"35_CR8","doi-asserted-by":"publisher","DOI":"10.1016\/j.physa.2019.121266","volume":"527","author":"T Chakraborty","year":"2019","unstructured":"Chakraborty, T., Chattopadhyay, S., Ghosh, I.: Forecasting dengue epidemics using a hybrid methodology. Phys. A Statist. Mech. Appl. 527, 121266 (2019)","journal-title":"Phys. A Statist. Mech. Appl."},{"key":"35_CR9","doi-asserted-by":"publisher","DOI":"10.1016\/j.chaos.2020.109850","volume":"135","author":"T Chakraborty","year":"2020","unstructured":"Chakraborty, T., Ghosh, I.: Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: a data-driven analysis. Chaos, Solitons Fractals 135, 109850 (2020)","journal-title":"Chaos, Solitons Fractals"},{"key":"35_CR10","doi-asserted-by":"crossref","unstructured":"Chakraborty, T., Ghosh, I., Mahajan, T., Arora, T.: Nowcasting of COVID-19 confirmed cases: foundations, trends, and challenges. In: Modeling, Control and Drug Development for COVID-19 Outbreak Prevention, pp. 1023\u20131064 (2022)","DOI":"10.1007\/978-3-030-72834-2_29"},{"key":"35_CR11","doi-asserted-by":"publisher","first-page":"491","DOI":"10.1016\/j.neucom.2020.03.011","volume":"399","author":"Y Chen","year":"2020","unstructured":"Chen, Y., Kang, Y., Chen, Y., Wang, Z.: Probabilistic forecasting with temporal convolutional neural network. Neurocomputing 399, 491\u2013501 (2020)","journal-title":"Neurocomputing"},{"issue":"2","key":"35_CR12","doi-asserted-by":"publisher","first-page":"240","DOI":"10.1109\/72.279188","volume":"5","author":"JT Connor","year":"1994","unstructured":"Connor, J.T., Martin, R.D., Atlas, L.E.: Recurrent neural networks and robust time series prediction. IEEE Trans. Neural Netw. 5(2), 240\u2013254 (1994)","journal-title":"IEEE Trans. Neural Netw."},{"key":"35_CR13","doi-asserted-by":"publisher","first-page":"480","DOI":"10.1016\/j.procs.2021.01.031","volume":"179","author":"E Dave","year":"2021","unstructured":"Dave, E., Leonardo, A., Jeanice, M., Hanafiah, N.: Forecasting Indonesia exports using a hybrid model Arima-LSTM. Proc. Comput. Sci. 179, 480\u2013487 (2021)","journal-title":"Proc. Comput. Sci."},{"issue":"496","key":"35_CR14","doi-asserted-by":"publisher","first-page":"1513","DOI":"10.1198\/jasa.2011.tm09771","volume":"106","author":"AM De Livera","year":"2011","unstructured":"De Livera, A.M., Hyndman, R.J., Snyder, R.D.: Forecasting time series with complex seasonal patterns using exponential smoothing. J. Am. Stat. Assoc. 106(496), 1513\u20131527 (2011)","journal-title":"J. Am. Stat. Assoc."},{"issue":"2","key":"35_CR15","doi-asserted-by":"publisher","first-page":"249","DOI":"10.1007\/s11063-014-9342-0","volume":"41","author":"E Egrioglu","year":"2015","unstructured":"Egrioglu, E., Yolcu, U., Aladag, C.H., Bas, E.: Recurrent multiplicative neuron model artificial neural network for non-linear time series forecasting. Neural Process. Lett. 41(2), 249\u2013258 (2015)","journal-title":"Neural Process. Lett."},{"issue":"2","key":"35_CR16","doi-asserted-by":"publisher","first-page":"287","DOI":"10.1016\/S0304-4076(97)00041-9","volume":"80","author":"H Entorf","year":"1997","unstructured":"Entorf, H.: Random walks with drifts: nonsense regression and spurious fixed-effect estimation. J. Economet. 80(2), 287\u2013296 (1997)","journal-title":"J. Economet."},{"issue":"2","key":"35_CR17","first-page":"231","volume":"47","author":"J Faraway","year":"1998","unstructured":"Faraway, J., Chatfield, C.: Time series forecasting with neural networks: a comparative study using the air line data. J. Roy. Stat. Soc.: Ser. C (Appl. Stat.) 47(2), 231\u2013250 (1998)","journal-title":"J. Roy. Stat. Soc.: Ser. C (Appl. Stat.)"},{"issue":"200","key":"35_CR18","doi-asserted-by":"publisher","first-page":"675","DOI":"10.1080\/01621459.1937.10503522","volume":"32","author":"M Friedman","year":"1937","unstructured":"Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675\u2013701 (1937)","journal-title":"J. Am. Stat. Assoc."},{"issue":"1","key":"35_CR19","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1162\/neco.1992.4.1.1","volume":"4","author":"S Geman","year":"1992","unstructured":"Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias\/variance dilemma. Neural Comput. 4(1), 1\u201358 (1992)","journal-title":"Neural Comput."},{"issue":"124","key":"35_CR20","first-page":"1","volume":"23","author":"J Herzen","year":"2022","unstructured":"Herzen, J., et al.: Darts: User-friendly modern machine learning for time series. J. Mach. Learn. Res. 23(124), 1\u20136 (2022)","journal-title":"J. Mach. Learn. Res."},{"key":"35_CR21","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-71918-2","volume-title":"Forecasting with Exponential Smoothing: the State Space Approach","author":"R Hyndman","year":"2008","unstructured":"Hyndman, R., Koehler, A.B., Ord, J.K., Snyder, R.D.: Forecasting with Exponential Smoothing: the State Space Approach, 1st edn. Springer Science & Business Media, Heidelberg (2008). https:\/\/doi.org\/10.1007\/978-3-540-71918-2","edition":"1"},{"key":"35_CR22","unstructured":"Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice. OTexts (2018)"},{"key":"35_CR23","unstructured":"Hyndman, R.J., et al.: Package \u2018forecast\u2019 (2020). https:\/\/cran.r-project.org\/web\/packages\/forecast\/forecast"},{"issue":"10","key":"35_CR24","doi-asserted-by":"publisher","first-page":"4942","DOI":"10.1016\/j.csda.2006.07.028","volume":"51","author":"RJ Hyndman","year":"2007","unstructured":"Hyndman, R.J., Ullah, M.S.: Robust forecasting of mortality and fertility rates: a functional data approach. Comput. Statist. Data Anal. 51(10), 4942\u20134956 (2007)","journal-title":"Comput. Statist. Data Anal."},{"key":"35_CR25","doi-asserted-by":"publisher","first-page":"59","DOI":"10.1016\/j.eswa.2019.06.060","volume":"137","author":"JP Karmy","year":"2019","unstructured":"Karmy, J.P., Maldonado, S.: Hierarchical time series forecasting via support vector regression in the European travel retail industry. Expert Syst. Appl. 137, 59\u201373 (2019)","journal-title":"Expert Syst. Appl."},{"issue":"1","key":"35_CR26","doi-asserted-by":"publisher","first-page":"479","DOI":"10.1016\/j.eswa.2009.05.044","volume":"37","author":"M Khashei","year":"2010","unstructured":"Khashei, M., Bijari, M.: An artificial neural network (p, d, q) model for time series forecasting. Expert Syst. Appl. 37(1), 479\u2013489 (2010)","journal-title":"Expert Syst. Appl."},{"issue":"2","key":"35_CR27","doi-asserted-by":"publisher","first-page":"90","DOI":"10.1007\/s005210200021","volume":"11","author":"V Kodogiannis","year":"2002","unstructured":"Kodogiannis, V., Lolis, A.: Forecasting financial time series using neural network and fuzzy system-based techniques. Neural Comput. App. 11(2), 90\u2013102 (2002)","journal-title":"Neural Comput. App."},{"issue":"3","key":"35_CR28","doi-asserted-by":"publisher","first-page":"397","DOI":"10.1016\/j.ijforecast.2004.10.003","volume":"21","author":"AJ Koning","year":"2005","unstructured":"Koning, A.J., Franses, P.H., Hibon, M., Stekler, H.O.: The m3 competition: statistical tests of the results. Int. J. Forecast. 21(3), 397\u2013409 (2005)","journal-title":"Int. J. Forecast."},{"key":"35_CR29","doi-asserted-by":"crossref","unstructured":"Kourentzes, N.: nnfor: Time series forecasting with neural networks. R package version 0.9. 6 (2017)","DOI":"10.32614\/CRAN.package.nnfor"},{"issue":"1","key":"35_CR30","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1162\/neco.2009.09-07-615","volume":"21","author":"P Leoni","year":"2009","unstructured":"Leoni, P.: Long-range out-of-sample properties of autoregressive neural networks. Neural Comput. 21(1), 1\u20138 (2009)","journal-title":"Neural Comput."},{"key":"35_CR31","unstructured":"Nochai, R., Nochai, T.: Arima model for forecasting oil palm price. In: Proceedings of the 2nd IMT-GT Regional Conference on Mathematics, Statistics and Applications, pp. 13\u201315 (2006)"},{"key":"35_CR32","unstructured":"Oreshkin, B.N., Carpov, D., Chapados, N., Bengio, Y.: N-beats: neural basis expansion analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437 (2019)"},{"key":"35_CR33","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1016\/j.engappai.2017.07.007","volume":"66","author":"S Panigrahi","year":"2017","unstructured":"Panigrahi, S., Behera, H.S.: A hybrid ETS-ANN model for time series forecasting. Eng. Appl. Artif. Intell. 66, 49\u201359 (2017)","journal-title":"Eng. Appl. Artif. Intell."},{"key":"35_CR34","doi-asserted-by":"crossref","unstructured":"Panja, M., Chakraborty, T., Kumar, U., Liu, N.: Epicasting: an ensemble wavelet neural network for forecasting epidemics. Neural Networks (2023)","DOI":"10.1016\/j.neunet.2023.05.049"},{"key":"35_CR35","doi-asserted-by":"publisher","first-page":"262","DOI":"10.1016\/j.apenergy.2018.11.063","volume":"236","author":"Y Qin","year":"2019","unstructured":"Qin, Y., et al.: Hybrid forecasting model based on long short term memory network and deep learning neural network for wind signal. Appl. Energy 236, 262\u2013272 (2019)","journal-title":"Appl. Energy"},{"issue":"11","key":"35_CR36","doi-asserted-by":"publisher","DOI":"10.1063\/5.0074213","volume":"31","author":"A Ray","year":"2021","unstructured":"Ray, A., Chakraborty, T., Ghosh, D.: Optimized ensemble deep learning framework for scalable forecasting of dynamics containing extreme events. Chaos Interdiscip. J. Nonlinear Sci. 31(11), 111105 (2021)","journal-title":"Chaos Interdiscip. J. Nonlinear Sci."},{"issue":"6088","key":"35_CR37","doi-asserted-by":"publisher","first-page":"533","DOI":"10.1038\/323533a0","volume":"323","author":"DE Rumelhart","year":"1986","unstructured":"Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533 (1986)","journal-title":"Nature"},{"issue":"3","key":"35_CR38","doi-asserted-by":"publisher","first-page":"1181","DOI":"10.1016\/j.ijforecast.2019.07.001","volume":"36","author":"D Salinas","year":"2020","unstructured":"Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: Deepar: probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 36(3), 1181\u20131191 (2020)","journal-title":"Int. J. Forecast."},{"key":"35_CR39","doi-asserted-by":"crossref","unstructured":"Selvin, S., Vinayakumar, R., Gopalakrishnan, E., Menon, V.K., Soman, K.: Stock price prediction using LSTM, RNN and CNN-sliding window model. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1643\u20131647. IEEE (2017)","DOI":"10.1109\/ICACCI.2017.8126078"},{"key":"35_CR40","doi-asserted-by":"publisher","unstructured":"Shahwan, T., Odening, M.: Forecasting agricultural commodity prices using hybrid neural networks. In: Chen, S.H., Wang, P.P., Kuo, T.W. (eds.) Computational Intelligence in Economics and Finance, pp. 63\u201374. Springer, Heidelberg (2007). https:\/\/doi.org\/10.1007\/978-3-540-72821-4_3","DOI":"10.1007\/978-3-540-72821-4_3"},{"issue":"14","key":"35_CR41","doi-asserted-by":"publisher","first-page":"2449","DOI":"10.1016\/S1352-2310(00)00466-0","volume":"35","author":"R Vautard","year":"2001","unstructured":"Vautard, R., Beekmann, M., Roux, J., Gombert, D.: Validation of a hybrid forecasting system for the ozone concentrations over the Paris area. Atmos. Environ. 35(14), 2449\u20132461 (2001)","journal-title":"Atmos. Environ."},{"key":"35_CR42","doi-asserted-by":"publisher","first-page":"17","DOI":"10.1007\/0-387-25061-1_2","volume-title":"Algorithmic Learning in a Random World","author":"V Vovk","year":"2005","unstructured":"Vovk, V., Gammerman, A., Shafer, G.: Conformal prediction. In: Vovk, V., Gammerman, A., Shafer, G. (eds.) Algorithmic Learning in a Random World, pp. 17\u201351. Springer, Boston (2005). https:\/\/doi.org\/10.1007\/0-387-25061-1_2"},{"key":"35_CR43","doi-asserted-by":"crossref","unstructured":"Wang, X., Hyndman, R.J., Li, F., Kang, Y.: Forecast combinations: an over 50-year review. arXiv preprint arXiv:2205.04216 (2022)","DOI":"10.1016\/j.ijforecast.2022.11.005"},{"issue":"3","key":"35_CR44","doi-asserted-by":"publisher","first-page":"324","DOI":"10.1287\/mnsc.6.3.324","volume":"6","author":"PR Winters","year":"1960","unstructured":"Winters, P.R.: Forecasting sales by exponentially weighted moving averages. Manage. Sci. 6(3), 324\u2013342 (1960)","journal-title":"Manage. Sci."},{"key":"35_CR45","unstructured":"Wu, N., Green, B., Ben, X., O\u2019Banion, S.: Deep transformer models for time series forecasting: The influenza prevalence case. arXiv preprint arXiv:2001.08317 (2020)"},{"key":"35_CR46","doi-asserted-by":"publisher","first-page":"169","DOI":"10.1016\/j.tre.2018.12.005","volume":"122","author":"S Xu","year":"2019","unstructured":"Xu, S., Chan, H.K., Zhang, T.: Forecasting the demand of the aviation industry using hybrid time series Sarima-SVR approach. Transp. Res. Part E Logist. Transp. Rev. 122, 169\u2013180 (2019)","journal-title":"Transp. Res. Part E Logist. Transp. Rev."},{"key":"35_CR47","doi-asserted-by":"publisher","first-page":"159","DOI":"10.1016\/S0925-2312(01)00702-0","volume":"50","author":"GP Zhang","year":"2003","unstructured":"Zhang, G.P.: Time series forecasting using a hybrid Arima and neural network model. Neurocomputing 50, 159\u2013175 (2003)","journal-title":"Neurocomputing"}],"container-title":["Communications in Computer and Information Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-99-8178-6_35","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,4]],"date-time":"2024-11-04T07:37:53Z","timestamp":1730705873000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-99-8178-6_35"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11,30]]},"ISBN":["9789819981779","9789819981786"],"references-count":47,"URL":"https:\/\/doi.org\/10.1007\/978-981-99-8178-6_35","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2023,11,30]]},"assertion":[{"value":"30 November 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Changsha","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 November 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 November 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/iconip2023.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1274","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"650","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"51% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4.14","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.46","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}