{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T21:40:48Z","timestamp":1742938848682,"version":"3.40.3"},"publisher-location":"Singapore","reference-count":24,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789819980819"},{"type":"electronic","value":"9789819980826"}],"license":[{"start":{"date-parts":[[2023,11,15]],"date-time":"2023-11-15T00:00:00Z","timestamp":1700006400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,11,15]],"date-time":"2023-11-15T00:00:00Z","timestamp":1700006400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-981-99-8082-6_31","type":"book-chapter","created":{"date-parts":[[2023,11,14]],"date-time":"2023-11-14T16:08:09Z","timestamp":1699978089000},"page":"401-412","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Efficient Collaboration via\u00a0Interaction Information in\u00a0Multi-agent System"],"prefix":"10.1007","author":[{"given":"Meilong","family":"Shi","sequence":"first","affiliation":[]},{"given":"Quan","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Zhigang","family":"Huang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,11,15]]},"reference":[{"key":"31_CR1","unstructured":"Alemi, A.A., Fischer, I., Dillon, J.V., Murphy, K.: Deep variational information bottleneck. arXiv preprint arXiv:1612.00410 (2016)"},{"key":"31_CR2","doi-asserted-by":"crossref","unstructured":"Bai, Y., Gong, C., Zhang, B., Fan, G., Hou, X., Lu, Y.: Cooperative multi-agent reinforcement learning with hypergraph convolution. In: 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1\u20138. IEEE (2022)","DOI":"10.1109\/IJCNN55064.2022.9891942"},{"key":"31_CR3","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"67","DOI":"10.1007\/978-3-030-47358-7_7","volume-title":"Advances in Artificial Intelligence","author":"S Bhalla","year":"2020","unstructured":"Bhalla, S., Ganapathi Subramanian, S., Crowley, M.: Deep multi agent reinforcement learning for autonomous driving. In: Goutte, C., Zhu, X. (eds.) Canadian AI 2020. LNCS (LNAI), vol. 12109, pp. 67\u201378. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-47358-7_7"},{"key":"31_CR4","series-title":"Mathematical Engineering","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-00080-0","volume-title":"Hypergraph Theory. An Introduction","author":"A Bretto","year":"2013","unstructured":"Bretto, A.: Hypergraph Theory. An Introduction. Mathematical Engineering, Springer, Cham (2013). https:\/\/doi.org\/10.1007\/978-3-319-00080-0"},{"key":"31_CR5","doi-asserted-by":"crossref","unstructured":"Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)","DOI":"10.3115\/v1\/D14-1179"},{"key":"31_CR6","doi-asserted-by":"crossref","unstructured":"Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3558\u20133565 (2019)","DOI":"10.1609\/aaai.v33i01.33013558"},{"key":"31_CR7","unstructured":"Kiran, B.R., et al.: Deep reinforcement learning for autonomous driving: a survey. IEEE Trans. Intell. Transp. Syst. (2021)"},{"key":"31_CR8","volume":"48","author":"J Li","year":"2021","unstructured":"Li, J., Yu, T.: Large-scale multi-agent deep reinforcement learning-based coordination strategy for energy optimization and control of proton exchange membrane fuel cell. Sustain. Energy Technol. Assess. 48, 101568 (2021)","journal-title":"Sustain. Energy Technol. Assess."},{"key":"31_CR9","doi-asserted-by":"crossref","unstructured":"Luo, Y.C., Tsai, C.W.: Multi-agent reinforcement learning based on two-step neighborhood experience for traffic light control. In: Proceedings of the 2021 ACM International Conference on Intelligent Computing and its Emerging Applications, pp. 28\u201333 (2021)","DOI":"10.1145\/3491396.3506544"},{"issue":"11","key":"31_CR10","first-page":"2579","volume":"9","author":"L Van der Maaten","year":"2008","unstructured":"Van der Maaten, L., Hinton, G.: Visualizing data using T-SNE. J. Mach. Learn. Res. 9(11), 2579\u20132605 (2008)","journal-title":"J. Mach. Learn. Res."},{"key":"31_CR11","unstructured":"Mahajan, A., Rashid, T., Samvelyan, M., Whiteson, S.: Maven: multi-agent variational exploration. In: Advances in Neural Information Processing Systems, vol. 32 (2019)"},{"key":"31_CR12","doi-asserted-by":"crossref","unstructured":"Oliehoek, F.A., Amato, C.: A concise introduction to decentralized pomdps (2015)","DOI":"10.1007\/978-3-319-28929-8"},{"key":"31_CR13","unstructured":"Papoudakis, G., Christianos, F., Sch\u00e4fer, L., Albrecht, S.V.: Benchmarking multi-agent deep reinforcement learning algorithms in cooperative tasks. arXiv preprint arXiv:2006.07869 (2020)"},{"key":"31_CR14","unstructured":"Rashid, T., Samvelyan, M., Witt, C.S., Farquhar, G., Foerster, J., Whiteson, S.: Qmix: monotonic value function factorisation for deep multi-agent reinforcement learning. In: International Conference on Machine Learning, pp. 4292\u20134301 (2018)"},{"key":"31_CR15","unstructured":"Samvelyan, M., et al.: The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043 (2019)"},{"key":"31_CR16","unstructured":"Sunehag, P., et al.: Value-decomposition networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296 (2017)"},{"key":"31_CR17","doi-asserted-by":"crossref","unstructured":"Tufano, R., Scalabrino, S., Pascarella, L., Aghajani, E., Oliveto, R., Bavota, G.: Using reinforcement learning for load testing of video games. In: Proceedings of the 44th International Conference on Software Engineering, pp. 2303\u20132314 (2022)","DOI":"10.1145\/3510003.3510625"},{"key":"31_CR18","unstructured":"Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)"},{"key":"31_CR19","unstructured":"Wang, J., Ren, Z., Liu, T., Yu, Y., Zhang, C.: Qplex: duplex dueling multi-agent q-learning. In: International Conference on Learning Representations (ICLR) (2021)"},{"key":"31_CR20","unstructured":"Wang, T., Wang, J., Zheng, C., Zhang, C.: Learning nearly decomposable value functions via communication minimization. arXiv preprint arXiv:1910.05366 (2019)"},{"key":"31_CR21","doi-asserted-by":"crossref","unstructured":"Wen, G., Fu, J., Dai, P., Zhou, J.: DTDE: a new cooperative multi-agent reinforcement learning framework. Innovation 2(4) (2021)","DOI":"10.1016\/j.xinn.2021.100162"},{"issue":"8","key":"31_CR22","doi-asserted-by":"publisher","first-page":"8243","DOI":"10.1109\/TVT.2020.2997896","volume":"69","author":"T Wu","year":"2020","unstructured":"Wu, T., et al.: Multi-agent deep reinforcement learning for urban traffic light control in vehicular networks. IEEE Trans. Veh. Technol. 69(8), 8243\u20138256 (2020)","journal-title":"IEEE Trans. Veh. Technol."},{"key":"31_CR23","series-title":"LNCS","first-page":"219","volume-title":"ICONIP 2022","author":"B Zhang","year":"2022","unstructured":"Zhang, B., Bai, Y., Xu, Z., Li, D., Fan, G.: Efficient policy generation in multi-agent systems via hypergraph neural network. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds.) ICONIP 2022. LNCS, vol. 13624, pp. 219\u2013230. Springer, Cham (2022)"},{"key":"31_CR24","first-page":"7900","volume":"10","author":"R Zhang","year":"2022","unstructured":"Zhang, R., Zong, Q., Zhang, X., Dou, L., Tian, B.: Game of drones: multi-UAV pursuit-evasion game with online motion planning by deep reinforcement learning. IEEE Trans. Neural Networks Learn. Syst. 10, 7900\u20137909 (2022)","journal-title":"IEEE Trans. Neural Networks Learn. Syst."}],"container-title":["Lecture Notes in Computer Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-99-8082-6_31","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T18:32:22Z","timestamp":1710354742000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-99-8082-6_31"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11,15]]},"ISBN":["9789819980819","9789819980826"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-981-99-8082-6_31","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023,11,15]]},"assertion":[{"value":"15 November 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Changsha","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 November 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 November 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/iconip2023.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1274","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"650","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"51% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4.14","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.46","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}