{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,28]],"date-time":"2025-03-28T04:07:03Z","timestamp":1743134823947,"version":"3.40.3"},"publisher-location":"Singapore","reference-count":13,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789819980666"},{"type":"electronic","value":"9789819980673"}],"license":[{"start":{"date-parts":[[2023,11,16]],"date-time":"2023-11-16T00:00:00Z","timestamp":1700092800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,11,16]],"date-time":"2023-11-16T00:00:00Z","timestamp":1700092800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-981-99-8067-3_36","type":"book-chapter","created":{"date-parts":[[2023,11,15]],"date-time":"2023-11-15T20:02:55Z","timestamp":1700078575000},"page":"488-499","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Domain-Invariant Task Optimization for Cross-domain Recommendation"],"prefix":"10.1007","author":[{"given":"Dou","family":"Liu","sequence":"first","affiliation":[]},{"given":"Qingbo","family":"Hao","sequence":"additional","affiliation":[]},{"given":"Yingyuan","family":"Xiao","sequence":"additional","affiliation":[]},{"given":"Wenguang","family":"Zheng","sequence":"additional","affiliation":[]},{"given":"Jinsong","family":"Wang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,11,16]]},"reference":[{"key":"36_CR1","doi-asserted-by":"crossref","unstructured":"Fu, W., Peng, Z., Wang, S., Xu, Y., Li, J.: Deeply fusing reviews and contents for cold start users in cross-domain recommendation systems. In: AAAI (2019)","DOI":"10.1609\/aaai.v33i01.330194"},{"key":"36_CR2","doi-asserted-by":"crossref","unstructured":"Kang, S., Hwang, J., Lee, D., Yu, H.: Semi-supervised learning for cross-domain recommendation to cold-start users. In: CIKM (2019)","DOI":"10.1145\/3357384.3357914"},{"key":"36_CR3","doi-asserted-by":"crossref","unstructured":"Man, T., Shen, H., Jin, X., Cheng, X.: Cross-domain recommendation: an embedding and mapping approach. In: IJCAI (2017)","DOI":"10.24963\/ijcai.2017\/343"},{"key":"36_CR4","unstructured":"Zhu, F., Wang, Y., Chen, C., Liu, G., Orgun, M., Wu, J.: A deep framework for cross-domain and cross-system recommendations. arXiv preprint arXiv:2009.06215 (2020)"},{"key":"36_CR5","doi-asserted-by":"crossref","unstructured":"Wang, T., Zhuang, F., Zhang, Z., Wang, D., Zhou, J., He, Q.: Low-dimensional alignment for cross-domain recommendation. In: CIKM (2021)","DOI":"10.1145\/3459637.3482137"},{"key":"36_CR6","doi-asserted-by":"crossref","unstructured":"Singh, A.P., Gordon, G.J.: Relational learning via collective matrix factorization. In: SIGKDD (2008)","DOI":"10.21236\/ADA486804"},{"key":"36_CR7","doi-asserted-by":"crossref","unstructured":"Pan, W., Xiang, E., Liu, N., Yang, Q.: Transfer learning in collaborative filtering for sparsity reduction. In: AAAI (2010)","DOI":"10.1609\/aaai.v24i1.7578"},{"key":"36_CR8","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Liu, Y., Han, P., Miao, C., Cui, L., Li, B., Tang, H.: Learning personalized itemset mapping for cross-domain recommendation. In: IJCAI (2020)","DOI":"10.24963\/ijcai.2020\/355"},{"key":"36_CR9","doi-asserted-by":"crossref","unstructured":"Zhao, C., Li, C., Xiao, R., Deng, H., Sun, A.: CATN: cross-domain recommendation for cold-start users via aspect transfer network. In: SIGIR (2020)","DOI":"10.1145\/3397271.3401169"},{"key":"36_CR10","doi-asserted-by":"crossref","unstructured":"Zhu, Y., et al.: Transfer-meta framework for cross-domain recommendation to cold-start users. In: SIGIR (2021)","DOI":"10.1145\/3404835.3463010"},{"key":"36_CR11","doi-asserted-by":"crossref","unstructured":"Zhu, Y., et al.: Personalized transfer of user preferences for cross-domain recommendation. In: WSDM (2022)","DOI":"10.1145\/3488560.3498392"},{"key":"36_CR12","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)"},{"key":"36_CR13","unstructured":"Donahue, J., Jia, Y., Vinyals, J., Hoffman, J., Zhang, N.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: ICML (2014)"}],"container-title":["Lecture Notes in Computer Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-99-8067-3_36","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,7]],"date-time":"2024-03-07T16:41:28Z","timestamp":1709829688000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-99-8067-3_36"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11,16]]},"ISBN":["9789819980666","9789819980673"],"references-count":13,"URL":"https:\/\/doi.org\/10.1007\/978-981-99-8067-3_36","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023,11,16]]},"assertion":[{"value":"16 November 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Changsha","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 November 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 November 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/iconip2023.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1274","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"650","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"51% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4.14","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.46","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}