{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T14:26:45Z","timestamp":1726237605292},"publisher-location":"Singapore","reference-count":23,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789819980666"},{"type":"electronic","value":"9789819980673"}],"license":[{"start":{"date-parts":[[2023,11,16]],"date-time":"2023-11-16T00:00:00Z","timestamp":1700092800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,11,16]],"date-time":"2023-11-16T00:00:00Z","timestamp":1700092800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,11,16]],"date-time":"2023-11-16T00:00:00Z","timestamp":1700092800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,11,16]],"date-time":"2023-11-16T00:00:00Z","timestamp":1700092800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-981-99-8067-3_3","type":"book-chapter","created":{"date-parts":[[2023,11,15]],"date-time":"2023-11-15T15:02:55Z","timestamp":1700060575000},"page":"28-39","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Correlated Online k-Nearest Neighbors Regressor Chain for\u00a0Online Multi-output Regression"],"prefix":"10.1007","author":[{"given":"Zipeng","family":"Wu","sequence":"first","affiliation":[]},{"given":"Chu Kiong","family":"Loo","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8359-9888","authenticated-orcid":false,"given":"Kitsuchart","family":"Pasupa","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,11,16]]},"reference":[{"key":"3_CR1","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"249","DOI":"10.1007\/978-3-642-03915-7_22","volume-title":"Advances in Intelligent Data Analysis VIII","author":"A Bifet","year":"2009","unstructured":"Bifet, A., Gavald\u00e0, R.: Adaptive learning from evolving data streams. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 249\u2013260. Springer, Heidelberg (2009). https:\/\/doi.org\/10.1007\/978-3-642-03915-7_22"},{"doi-asserted-by":"publisher","unstructured":"Blum, A., Kalai, A., Langford, J.: Beating the hold-out: bounds for K-fold and progressive cross-validation. In: Ben-David, S., Long, P.M. (eds.) Proceedings of the Twelfth Annual Conference on Computational Learning Theory, COLT 1999, Santa Cruz, CA, USA, 7\u20139 July 1999, pp. 203\u2013208. ACM (1999). https:\/\/doi.org\/10.1145\/307400.307439","key":"3_CR2","DOI":"10.1145\/307400.307439"},{"key":"3_CR3","first-page":"551","volume":"7","author":"K Crammer","year":"2006","unstructured":"Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-aggressive algorithms. J. Mach. Learn. Res. 7, 551\u2013585 (2006)","journal-title":"J. Mach. Learn. Res."},{"doi-asserted-by":"publisher","unstructured":"Duarte, J., Gama, J.: Multi-target regression from high-speed data streams with adaptive model rules. In: 2015 IEEE International Conference on Data Science and Advanced Analytics, DSAA 2015, Campus des Cordeliers, Paris, France, 19\u201321 October 2015, pp. 1\u201310. IEEE (2015). https:\/\/doi.org\/10.1109\/DSAA.2015.7344900","key":"3_CR4","DOI":"10.1109\/DSAA.2015.7344900"},{"doi-asserted-by":"publisher","unstructured":"Duarte, J., Gama, J., Bifet, A.: Adaptive model rules from high-speed data streams. ACM Trans. Knowl. Discov. Data 10(3), 30:1\u201330:22 (2016). https:\/\/doi.org\/10.1145\/2829955","key":"3_CR5","DOI":"10.1145\/2829955"},{"issue":"1","key":"3_CR6","doi-asserted-by":"publisher","first-page":"7","DOI":"10.1023\/A:1008323212047","volume":"13","author":"S Dzeroski","year":"2000","unstructured":"Dzeroski, S., Demsar, D., Grbovic, J.: Predicting chemical parameters of river water quality from bioindicator data. Appl. Intell. 13(1), 7\u201317 (2000). https:\/\/doi.org\/10.1023\/A:1008323212047","journal-title":"Appl. Intell."},{"doi-asserted-by":"crossref","unstructured":"Gama, J.: Knowledge Discovery from Data Streams. CRC Press (2010)","key":"3_CR7","DOI":"10.1201\/EBK1439826119"},{"unstructured":"Gouk, H., Pfahringer, B., Frank, E.: Stochastic gradient trees. In: Lee, W.S., Suzuki, T. (eds.) Proceedings of The 11th Asian Conference on Machine Learning, ACML 2019, 17\u201319 November 2019, Nagoya, Japan. Proceedings of Machine Learning Research, vol. 101, pp. 1094\u20131109. PMLR (2019)","key":"3_CR8"},{"key":"3_CR9","series-title":"Lecture Notes in Business Information Processing","doi-asserted-by":"publisher","first-page":"28","DOI":"10.1007\/978-3-642-34889-1_3","volume-title":"Agent-Mediated Electronic Commerce. Designing Trading Strategies and Mechanisms for Electronic Markets","author":"W Groves","year":"2013","unstructured":"Groves, W., Gini, M.: Improving prediction in TAC SCM by integrating multivariate and temporal aspects via PLS regression. In: David, E., Robu, V., Shehory, O., Stein, S., Symeonidis, A. (eds.) AMEC\/TADA -2011. LNBIP, vol. 119, pp. 28\u201343. Springer, Heidelberg (2013). https:\/\/doi.org\/10.1007\/978-3-642-34889-1_3"},{"issue":"6","key":"3_CR10","doi-asserted-by":"publisher","first-page":"471","DOI":"10.1016\/j.knosys.2008.03.005","volume":"21","author":"EV Hatzikos","year":"2008","unstructured":"Hatzikos, E.V., Tsoumakas, G., Tzanis, G., Bassiliades, N., Vlahavas, I.P.: An empirical study on sea water quality prediction. Knowl. Based Syst. 21(6), 471\u2013478 (2008). https:\/\/doi.org\/10.1016\/j.knosys.2008.03.005","journal-title":"Knowl. Based Syst."},{"issue":"2","key":"3_CR11","doi-asserted-by":"publisher","first-page":"323","DOI":"10.1109\/TPAMI.2018.2794446","volume":"41","author":"C Li","year":"2019","unstructured":"Li, C., Wei, F., Dong, W., Wang, X., Liu, Q., Zhang, X.: Dynamic structure embedded online multiple-output regression for streaming data. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 323\u2013336 (2019). https:\/\/doi.org\/10.1109\/TPAMI.2018.2794446","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"doi-asserted-by":"publisher","unstructured":"Mastelini, S.M., de Leon Ferreira de Carvalho, A.C.P.: Using dynamical quantization to perform split attempts in online tree regressors. Pattern Recognit. Lett. 145, 37\u201342 (2021). https:\/\/doi.org\/10.1016\/j.patrec.2021.01.033","key":"3_CR12","DOI":"10.1016\/j.patrec.2021.01.033"},{"key":"3_CR13","doi-asserted-by":"publisher","first-page":"53","DOI":"10.1016\/j.ins.2017.06.017","volume":"415","author":"G Melki","year":"2017","unstructured":"Melki, G., Cano, A., Kecman, V., Ventura, S.: Multi-target support vector regression via correlation regressor chains. Inf. Sci. 415, 53\u201369 (2017). https:\/\/doi.org\/10.1016\/j.ins.2017.06.017","journal-title":"Inf. Sci."},{"unstructured":"Montiel, J., et al.: River: machine learning for streaming data in Python. J. Mach. Learn. Res. 22, 110:1\u2013110:8 (2021)","key":"3_CR14"},{"issue":"2","key":"3_CR15","doi-asserted-by":"publisher","first-page":"315","DOI":"10.1007\/s10844-017-0462-7","volume":"50","author":"A Osojnik","year":"2018","unstructured":"Osojnik, A., Panov, P., Dzeroski, S.: Tree-based methods for online multi-target regression. J. Intell. Inf. Syst. 50(2), 315\u2013339 (2018). https:\/\/doi.org\/10.1007\/s10844-017-0462-7","journal-title":"J. Intell. Inf. Syst."},{"key":"3_CR16","series-title":"Lecture Notes in Business Information Processing","doi-asserted-by":"publisher","first-page":"175","DOI":"10.1007\/978-3-642-15237-5_13","volume-title":"Agent-Mediated Electronic Commerce and Trading Agent Design and Analysis","author":"D Pardoe","year":"2010","unstructured":"Pardoe, D., Stone, P.: The 2007 TAC SCM prediction challenge. In: Ketter, W., La Poutr\u00e9, H., Sadeh, N., Shehory, O., Walsh, W. (eds.) AMEC\/TADA -2008. LNBIP, vol. 44, pp. 175\u2013189. Springer, Heidelberg (2010). https:\/\/doi.org\/10.1007\/978-3-642-15237-5_13"},{"doi-asserted-by":"publisher","unstructured":"Read, J., Martino, L.: Probabilistic regressor chains with monte Carlo methods. Neurocomputing 413, 471\u2013486 (2020). https:\/\/doi.org\/10.1016\/j.neucom.2020.05.024","key":"3_CR17","DOI":"10.1016\/j.neucom.2020.05.024"},{"key":"3_CR18","doi-asserted-by":"publisher","first-page":"560","DOI":"10.1016\/j.enbuild.2012.03.003","volume":"49","author":"A Tsanas","year":"2012","unstructured":"Tsanas, A., Xifara, A.: Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy Build. 49, 560\u2013567 (2012)","journal-title":"Energy Build."},{"doi-asserted-by":"publisher","unstructured":"Wu, Z., Lian, G.: A novel dynamically adjusted regressor chain for taxi demand prediction. In: 2020 International Joint Conference on Neural Networks, IJCNN 2020, Glasgow, United Kingdom, 19\u201324 July 2020, pp. 1\u201310. IEEE (2020). https:\/\/doi.org\/10.1109\/IJCNN48605.2020.9207160","key":"3_CR19","DOI":"10.1109\/IJCNN48605.2020.9207160"},{"doi-asserted-by":"publisher","unstructured":"Wu, Z., Loo, C.K., Pasupa, K., Xu, L.: An interpretable multi-target regression method for hierarchical load forecasting. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds.) Neural Information Processing - 29th International Conference, ICONIP 2022, Virtual Event, 22\u201326 November 2022, Proceedings, Part VII. CCIS, vol. 1794, pp. 3\u201312. Springer, Singapore (2022). https:\/\/doi.org\/10.1007\/978-981-99-1648-1_1","key":"3_CR20","DOI":"10.1007\/978-981-99-1648-1_1"},{"issue":"1","key":"3_CR21","doi-asserted-by":"publisher","first-page":"55","DOI":"10.1007\/s10994-016-5546-z","volume":"104","author":"ES Xioufis","year":"2016","unstructured":"Xioufis, E.S., Tsoumakas, G., Groves, W., Vlahavas, I.P.: Multi-target regression via input space expansion: treating targets as inputs. Mach. Learn. 104(1), 55\u201398 (2016). https:\/\/doi.org\/10.1007\/s10994-016-5546-z","journal-title":"Mach. Learn."},{"issue":"9","key":"3_CR22","doi-asserted-by":"publisher","first-page":"15155","DOI":"10.1109\/TITS.2021.3137446","volume":"23","author":"H Yu","year":"2022","unstructured":"Yu, H., Lu, J., Liu, A., Wang, B., Li, R., Zhang, G.: Real-time prediction system of train carriage load based on multi-stream fuzzy learning. IEEE Trans. Intell. Transp. Syst. 23(9), 15155\u201315165 (2022). https:\/\/doi.org\/10.1109\/TITS.2021.3137446","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"issue":"8","key":"3_CR23","doi-asserted-by":"publisher","first-page":"4862","DOI":"10.1109\/TSMC.2021.3102978","volume":"52","author":"H Yu","year":"2022","unstructured":"Yu, H., Lu, J., Zhang, G.: MORStreaming: a multioutput regression system for streaming data. IEEE Trans. Syst. Man Cybern. Syst. 52(8), 4862\u20134874 (2022). https:\/\/doi.org\/10.1109\/TSMC.2021.3102978","journal-title":"IEEE Trans. Syst. Man Cybern. Syst."}],"container-title":["Lecture Notes in Computer Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-99-8067-3_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,7]],"date-time":"2024-03-07T11:35:16Z","timestamp":1709811316000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-99-8067-3_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11,16]]},"ISBN":["9789819980666","9789819980673"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-981-99-8067-3_3","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023,11,16]]},"assertion":[{"value":"16 November 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Changsha","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 November 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 November 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/iconip2023.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1274","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"650","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"51% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4.14","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.46","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}