{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T08:16:00Z","timestamp":1743063360478,"version":"3.40.3"},"publisher-location":"Singapore","reference-count":17,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789819947607"},{"type":"electronic","value":"9789819947614"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-981-99-4761-4_25","type":"book-chapter","created":{"date-parts":[[2023,7,30]],"date-time":"2023-07-30T16:02:10Z","timestamp":1690732930000},"page":"288-298","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Improved Deep Learning-Based Efficientpose Algorithm for Egocentric Marker-Less Tool and Hand Pose Estimation in Manual Assembly"],"prefix":"10.1007","author":[{"given":"Zihan","family":"Niu","sequence":"first","affiliation":[]},{"given":"Yi","family":"Xia","sequence":"additional","affiliation":[]},{"given":"Jun","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Bing","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Peng","family":"Chen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,7,31]]},"reference":[{"key":"25_CR1","unstructured":"Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105\u20136114. PMLR (2019)"},{"key":"25_CR2","doi-asserted-by":"crossref","unstructured":"Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781\u201310790 (2020)","DOI":"10.1109\/CVPR42600.2020.01079"},{"key":"25_CR3","doi-asserted-by":"crossref","unstructured":"Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779\u2013788 (2016)","DOI":"10.1109\/CVPR.2016.91"},{"key":"25_CR4","doi-asserted-by":"crossref","unstructured":"Mahendran, S., Ali, H., Vidal, R.: 3D pose regression using convolutional neural networks. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 2174\u20132182 (2017)","DOI":"10.1109\/ICCVW.2017.254"},{"key":"25_CR5","doi-asserted-by":"crossref","unstructured":"Xiang, Y., Schmidt, T., Narayanan, V., et al.: PoseCNN: a convolutional neural network for 6D object pose estimation in cluttered scenes. arXiv preprint arXiv:1711.00199 (2017)","DOI":"10.15607\/RSS.2018.XIV.019"},{"key":"25_CR6","doi-asserted-by":"crossref","unstructured":"Romero, J., Tzionas, D., Black, M.J.: Embodied hands: modeling and capturing hands and bodies together. ACM Trans. Graph. (2017)","DOI":"10.1145\/3130800.3130883"},{"key":"25_CR7","first-page":"32","volume":"356","author":"H Touvron","year":"2019","unstructured":"Touvron, H., Vedaldi, A., Douze, M., et al.: Fixing the train-test resolution discrepancy. Adv. Neural. Inf. Process. Syst. 356, 32 (2019)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"25_CR8","unstructured":"Tan, M., Le, Q.: EfficientNetV2: smaller models and faster training. In: International Conference on Machine Learning, pp. 10096\u201310106. PMLR (2021)"},{"key":"25_CR9","unstructured":"Hoffer, E., Weinstein, B., Hubara, I., et al.: Mix & match: training convnets with mixed image sizes for improved accuracy, speed and scale resiliency. arXiv preprint arXiv:1908.08986 (2019)"},{"key":"25_CR10","doi-asserted-by":"crossref","unstructured":"You, Y., Zhang, Z., Hsieh, C.J., et al.: ImageNet training in minutes. In: Proceedings of the 47th International Conference on Parallel Processing, pp. 1\u201310 (2018)","DOI":"10.1145\/3225058.3225069"},{"issue":"1","key":"25_CR11","first-page":"1929","volume":"15","author":"N Srivastava","year":"2014","unstructured":"Srivastava, N., Hinton, G., Krizhevsky, A., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929\u20131958 (2014)","journal-title":"J. Mach. Learn. Res."},{"key":"25_CR12","doi-asserted-by":"crossref","unstructured":"Cubuk, E.D., Zoph, B., Shlens, J., et al.: RandAugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 702\u2013703 (2020)","DOI":"10.1109\/CVPRW50498.2020.00359"},{"key":"25_CR13","unstructured":"Zhang, H., Cisse, M., Dauphin, Y.N., et al.: Mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)"},{"issue":"5","key":"25_CR14","doi-asserted-by":"publisher","first-page":"799","DOI":"10.1007\/s11548-021-02369-2","volume":"16","author":"J Hein","year":"2021","unstructured":"Hein, J., et al.: Towards markerless surgical tool and hand pose estimation. Int. J. Comput. Assist. Radiol. Surg. 16(5), 799\u2013808 (2021)","journal-title":"Int. J. Comput. Assist. Radiol. Surg."},{"key":"25_CR15","doi-asserted-by":"crossref","unstructured":"Peng, S., Liu, Y., Huang, Q., et al.: PvNet: pixel-wise voting network for 6D of pose estimation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 4561\u20134570 (2019)","DOI":"10.1109\/CVPR.2019.00469"},{"key":"25_CR16","doi-asserted-by":"publisher","first-page":"16591","DOI":"10.1109\/ACCESS.2021.3053408","volume":"9","author":"W Weng","year":"2021","unstructured":"Weng, W., Zhu, X.: INet: convolutional networks for biomedical image segmentation. IEEE Access 9, 16591\u201316603 (2021)","journal-title":"IEEE Access"},{"key":"25_CR17","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"}],"container-title":["Lecture Notes in Computer Science","Advanced Intelligent Computing Technology and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-99-4761-4_25","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T23:19:52Z","timestamp":1690931992000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-99-4761-4_25"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9789819947607","9789819947614"],"references-count":17,"URL":"https:\/\/doi.org\/10.1007\/978-981-99-4761-4_25","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"31 July 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICIC","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Intelligent Computing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Zhengzhou","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 August 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 August 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icic2023a","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.ic-icc.cn\/2023\/index.htm","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}