{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T11:44:39Z","timestamp":1742989479169,"version":"3.40.3"},"publisher-location":"Singapore","reference-count":34,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789819947416"},{"type":"electronic","value":"9789819947423"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-981-99-4742-3_51","type":"book-chapter","created":{"date-parts":[[2023,7,30]],"date-time":"2023-07-30T00:02:38Z","timestamp":1690675358000},"page":"614-625","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Corneal Ulcer Automatic Classification Network Based on Improved Mobile ViT"],"prefix":"10.1007","author":[{"given":"Chenlin","family":"Zhu","sequence":"first","affiliation":[]},{"given":"Wenyan","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Kun","family":"Lu","sequence":"additional","affiliation":[]},{"given":"Jun","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Peng","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Lejun","family":"Pan","sequence":"additional","affiliation":[]},{"given":"Jiawei","family":"Ni","sequence":"additional","affiliation":[]},{"given":"Bing","family":"Wang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,7,30]]},"reference":[{"key":"51_CR1","doi-asserted-by":"crossref","unstructured":"Bron, A.J., et al.: Methodologies to diagnose and monitor dry eye disease: report of the Diagnostic Methodology Subcommittee of the International Dry Eye WorkShop (2007). Ocul. Surf. 5, 108\u2013152 (2007)","DOI":"10.1016\/S1542-0124(12)70083-6"},{"key":"51_CR2","doi-asserted-by":"publisher","first-page":"650","DOI":"10.1016\/j.media.2009.05.005","volume":"13","author":"CI S\u00e1nchez","year":"2009","unstructured":"S\u00e1nchez, C.I., Garc\u00eda, M., Mayo, A., L\u00f3pez, M.I., Hornero, R.: Retinal image analysis based on mixture models to detect hard exudates. Med. Image Anal. 13, 650\u2013658 (2009)","journal-title":"Med. Image Anal."},{"key":"51_CR3","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1038\/s41597-020-0360-7","volume":"7","author":"L Deng","year":"2020","unstructured":"Deng, L., Lyu, J., Huang, H., Deng, Y., Yuan, J., Tang, X.: The SUSTech-SYSU dataset for automatically segmenting and classifying corneal ulcers. Sci. Data 7, 23 (2020)","journal-title":"Sci. Data"},{"key":"51_CR4","doi-asserted-by":"publisher","first-page":"e113843","DOI":"10.1371\/journal.pone.0113843","volume":"9","author":"X Song","year":"2014","unstructured":"Song, X., et al.: A multi-center, cross-sectional study on the burden of infectious keratitis in China. PLoS ONE 9, e113843 (2014)","journal-title":"PLoS ONE"},{"key":"51_CR5","first-page":"3","volume":"46","author":"J Chen","year":"2010","unstructured":"Chen, J., Yuan, J.: Strengthen the study of the ocular surface reconstruction. Chin. J. Ophthalmol. 46, 3\u20135 (2010)","journal-title":"Chin. J. Ophthalmol."},{"key":"51_CR6","doi-asserted-by":"publisher","first-page":"48","DOI":"10.1016\/j.clae.2008.09.004","volume":"32","author":"PB Morgan","year":"2009","unstructured":"Morgan, P.B., Maldonado-Codina, C.: Corneal staining: do we really understand what we are seeing? Contact Lens Anterior Eye 32, 48\u201354 (2009)","journal-title":"Contact Lens Anterior Eye"},{"key":"51_CR7","unstructured":"Davidson, H.J.J.N., G., CRYSTAL, M., GRACE, S., TILLEY, L.T.F.P.r.E.A.B.P.: Corneal Ulcer 377\u2013379 (2006)"},{"key":"51_CR8","doi-asserted-by":"crossref","unstructured":"Cinar, I., Taspinar, Y.S., Kursun, R., Koklu, M.: Identification of corneal ulcers with pre-trained AlexNet based on transfer learning. In: 2022 11th Mediterranean Conference on Embedded Computing (MECO), pp. 1\u20134. IEEE (2022)","DOI":"10.1109\/MECO55406.2022.9797218"},{"key":"51_CR9","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014)"},{"key":"51_CR10","doi-asserted-by":"crossref","unstructured":"Tang, N., Liu, H., Yue, K., Li, W., Yue, X.: Automatic classification for corneal ulcer using a modified VGG network. In: 2020 International Conference on Artificial Intelligence and Computer Engineering (ICAICE), pp. 120\u2013123. IEEE (2020)","DOI":"10.1109\/ICAICE51518.2020.00029"},{"key":"51_CR11","doi-asserted-by":"publisher","first-page":"1344","DOI":"10.3390\/diagnostics12061344","volume":"12","author":"H Alquran","year":"2022","unstructured":"Alquran, H., Al-Issa, Y., Alsalatie, M., Mustafa, W.A., Qasmieh, I.A., Zyout, A.: Intelligent diagnosis and classification of keratitis. Diagnostics 12, 1344 (2022)","journal-title":"Diagnostics"},{"key":"51_CR12","unstructured":"Mehta, S., Rastegari, M.: MobileViT: light-weight, general-purpose, and mobile-friendly vision transformer (2021)"},{"key":"51_CR13","doi-asserted-by":"crossref","unstructured":"Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132\u20137141. (2018)","DOI":"10.1109\/CVPR.2018.00745"},{"key":"51_CR14","doi-asserted-by":"crossref","unstructured":"Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510\u20134520 (2018)","DOI":"10.1109\/CVPR.2018.00474"},{"key":"51_CR15","unstructured":"Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications (2017)"},{"key":"51_CR16","unstructured":"Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105\u20136114. PMLR (2019)"},{"key":"51_CR17","unstructured":"Tan, M., Le, Q.: EfficientNetV2: smaller models and faster training. In: International Conference on Machine Learning, pp. 10096\u201310106. PMLR (2021)"},{"key":"51_CR18","unstructured":"Wadekar, S.N., Chaurasia, A.: MobileViTv3: mobile-friendly vision transformer with simple and effective fusion of local, global and input features (2022)"},{"key":"51_CR19","doi-asserted-by":"crossref","unstructured":"Fan, H., et al.: Multiscale vision transformers. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 6824\u20136835 (2021)","DOI":"10.1109\/ICCV48922.2021.00675"},{"key":"51_CR20","doi-asserted-by":"crossref","unstructured":"Bello, I., Zoph, B., Vaswani, A., Shlens, J., Le, Q.V.: Attention augmented convolutional networks. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 3286\u20133295 (2019)","DOI":"10.1109\/ICCV.2019.00338"},{"key":"51_CR21","doi-asserted-by":"crossref","unstructured":"Radosavovic, I., Johnson, J., Xie, S., Lo, W.-Y., Doll\u00e1r, P.: On network design spaces for visual recognition. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 1882\u20131890 (2019)","DOI":"10.1109\/ICCV.2019.00197"},{"key":"51_CR22","doi-asserted-by":"crossref","unstructured":"d\u2019Ascoli, S., Touvron, H., Leavitt, M.L., Morcos, A.S., Biroli, G., Sagun, L.: ConViT: improving vision transformers with soft convolutional inductive biases. In: International Conference on Machine Learning, pp. 2286\u20132296. PMLR (2021)","DOI":"10.1088\/1742-5468\/ac9830"},{"key":"51_CR23","doi-asserted-by":"crossref","unstructured":"Heo, B., Yun, S., Han, D., Chun, S., Choe, J., Oh, S.J.: Rethinking spatial dimensions of vision transformers. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 11936\u201311945 (2021)","DOI":"10.1109\/ICCV48922.2021.01172"},{"key":"51_CR24","first-page":"3965","volume":"34","author":"Z Dai","year":"2021","unstructured":"Dai, Z., Liu, H., Le, Q.V., Tan, M.: CoAtNet: marrying convolution and attention for all data sizes. Adv. Neural Inf. Process. Syst. 34, 3965\u20133977 (2021)","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"51_CR25","doi-asserted-by":"crossref","unstructured":"Chen, Y., et al.: Mobile-former: bridging MobileNet and transformer. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 5270\u20135279 (2022)","DOI":"10.1109\/CVPR52688.2022.00520"},{"key":"51_CR26","doi-asserted-by":"crossref","unstructured":"Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 10012\u201310022 (2021)","DOI":"10.1109\/ICCV48922.2021.00986"},{"key":"51_CR27","doi-asserted-by":"crossref","unstructured":"Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 116\u2013131 (2018)","DOI":"10.1007\/978-3-030-01264-9_8"},{"key":"51_CR28","doi-asserted-by":"crossref","unstructured":"Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848\u20136856 (2018)","DOI":"10.1109\/CVPR.2018.00716"},{"key":"51_CR29","unstructured":"Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)"},{"key":"51_CR30","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"51_CR31","doi-asserted-by":"crossref","unstructured":"Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., Xie, S.: A ConvNet for the 2020s. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976\u201311986 (2022)","DOI":"10.1109\/CVPR52688.2022.01167"},{"key":"51_CR32","unstructured":"Dosovitskiy, A., et al.: An image is worth 16\u00a0\u00d7\u00a016 words: transformers for image recognition at scale (2020)"},{"key":"51_CR33","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-030-01234-2_1","volume-title":"Computer Vision \u2013 ECCV 2018","author":"S Woo","year":"2018","unstructured":"Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3\u201319. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01234-2_1"},{"key":"51_CR34","doi-asserted-by":"crossref","unstructured":"Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 13713\u201313722 (2021)","DOI":"10.1109\/CVPR46437.2021.01350"}],"container-title":["Lecture Notes in Computer Science","Advanced Intelligent Computing Technology and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-99-4742-3_51","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T23:29:23Z","timestamp":1690932563000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-99-4742-3_51"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9789819947416","9789819947423"],"references-count":34,"URL":"https:\/\/doi.org\/10.1007\/978-981-99-4742-3_51","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"30 July 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICIC","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Intelligent Computing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Zhengzhou","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 August 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 August 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icic2023a","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.ic-icc.cn\/2023\/index.htm","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}