{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T03:02:19Z","timestamp":1726196539161},"publisher-location":"Singapore","reference-count":29,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789819923847"},{"type":"electronic","value":"9789819923854"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-981-99-2385-4_11","type":"book-chapter","created":{"date-parts":[[2023,5,12]],"date-time":"2023-05-12T14:03:52Z","timestamp":1683900232000},"page":"148-163","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Research on Cost Control of Mobile Crowdsourcing Supporting Low Budget in Large Scale Environmental Information Monitoring"],"prefix":"10.1007","author":[{"given":"Lili","family":"Gao","sequence":"first","affiliation":[]},{"given":"Zhen","family":"Yao","sequence":"additional","affiliation":[]},{"given":"Liping","family":"Gao","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,5,13]]},"reference":[{"issue":"1\/2","key":"11_CR1","doi-asserted-by":"publisher","first-page":"51","DOI":"10.3233\/IP-2010-0200","volume":"15","author":"N Maisonneuve","year":"2010","unstructured":"Maisonneuve, N., Stevens, M., Ochab, B.: Participatory noise pollution monitoring using mobile phones. Inform. Polity 15(1\/2), 51\u201371 (2010)","journal-title":"Inform. Polity"},{"key":"11_CR2","doi-asserted-by":"crossref","unstructured":"Rana, R.K., Chou, C.T., Kanhere, S., et al.: Ear-Phone: an end-to-end participatory urban noise mapping system. In: 9th ACM\/IEEE International Conference on Information Processing in Sensor Networks, IPSN, pp. 105\u2013116. (2010)","DOI":"10.1145\/1791212.1791226"},{"key":"11_CR3","unstructured":"Min, M., Sasank, R., Katie, S., et al.: PEIR, the personal environmental impact report, as a platform for participatory sensing systems research. In: 7th International Conference on Mobile Systems, Applications, and Services, pp. 55\u201368 (2009)"},{"key":"11_CR4","doi-asserted-by":"crossref","unstructured":"Lane, N.D., Chon, Y., Zhou, L., et al.: Piggyback CrowdSensing (PCS): energy efficient crowdsourcing of mobile sensor data by exploiting smartphone app opportunities. In: ACM Conference on Embedded Networked Sensor Systems, pp. 1\u201314 (2013)","DOI":"10.1145\/2517351.2517372"},{"key":"11_CR5","doi-asserted-by":"crossref","unstructured":"Xiao, M., Wu, J., Huang, L.: Online task assignment for crowdsensing in predictable mobile social networks. IEEE. Trans. Mob. Comput. 16(8), 2306\u20132320 (2017)","DOI":"10.1109\/TMC.2016.2616473"},{"key":"11_CR6","doi-asserted-by":"crossref","unstructured":"He, S., Kang, G.S.: Steering crowdsourced signal map construction via bayesian compressive sensing. In: IEEE Conference on Computer Communications, IEEE INFOCOM, pp. 1016\u20131024 (2018)","DOI":"10.1109\/INFOCOM.2018.8485972"},{"issue":"2","key":"11_CR7","doi-asserted-by":"publisher","first-page":"489","DOI":"10.1109\/TIT.2005.862083","volume":"52","author":"EJ Candes","year":"2006","unstructured":"Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory. 52(2), 489\u2013509 (2006)","journal-title":"IEEE Trans. Inf. Theory."},{"issue":"8","key":"11_CR8","doi-asserted-by":"publisher","first-page":"1207","DOI":"10.1002\/cpa.20124","volume":"59","author":"EJ Candes","year":"2006","unstructured":"Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207\u20131223 (2006)","journal-title":"Commun. Pure Appl. Math."},{"key":"11_CR9","doi-asserted-by":"crossref","unstructured":"Wang, L., Zhang, D., Pathak, A., et al.: CCS-TA: quality-guaranteed online task allocation in compressive crowdsensing. In: ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp, pp. 683\u2013694 (2015)","DOI":"10.1145\/2750858.2807513"},{"key":"11_CR10","doi-asserted-by":"crossref","unstructured":"Wang, L., Zhang, D., Yang, D., et al.: SPACE-TA: cost-effective task allocation exploiting intradata and interdata correlations in sparse crowdsensing, ACM Trans. Intell. Syst. Technol. 9(2), 20 (2018)","DOI":"10.1145\/3131671"},{"key":"11_CR11","doi-asserted-by":"crossref","unstructured":"Chen, Y., Guo, D., Xu, M.: ProSC plus: profit-driven online participant selection in compressive mobile crowdsensing. In: 2018 IEEE\/ACM 26th International Symposium on Quality of Service, IWQoS, pp. 1\u20136 (2018)","DOI":"10.1109\/IWQoS.2018.8624120"},{"key":"11_CR12","doi-asserted-by":"crossref","unstructured":"Zhou, T., Cai, Z., Xiao, B., et al.: Location privacy-preserving data recovery for mobile crowdsensing. Proc. ACM Interact. Mobile Wearable Ubiquit. Technol. 2(3), 151 (2018)","DOI":"10.1145\/3264961"},{"key":"11_CR13","doi-asserted-by":"crossref","unstructured":"Liu, T., Zhu, Y., Yang, Y., et al.: Incentive design for air pollution monitoring based on compressive crowdsensing. In: 59th Annual IEEE Global Communications Conference, IEEE BLOBECOM, pp. 1\u20136 (2016)","DOI":"10.1109\/GLOCOM.2016.7841892"},{"key":"11_CR14","doi-asserted-by":"crossref","unstructured":"Chen, J., Chen, Z., Zheng, H., et al.: A compressive and adaptive sampling approach in crowdsensing networks. In: 2017 9th International Conference on Wireless Communications and Signal Processing, WCSP, pp. 1\u20136 (2017)","DOI":"10.1109\/WCSP.2017.8171100"},{"issue":"3","key":"11_CR15","doi-asserted-by":"publisher","first-page":"1749","DOI":"10.1109\/JIOT.2018.2815982","volume":"5","author":"B Guo","year":"2018","unstructured":"Guo, B., Liu, Y., Wang, L.: Task allocation in spatial crowdsourcing: current state and future directions. IEEE Internet Things J. 5(3), 1749\u20131764 (2018)","journal-title":"IEEE Internet Things J."},{"issue":"2","key":"11_CR16","doi-asserted-by":"publisher","first-page":"3202","DOI":"10.1109\/JIOT.2018.2880463","volume":"6","author":"H Ko","year":"2019","unstructured":"Ko, H., Pack, S., Leung, V.C.M.: Coverage-guaranteed and energy-efficient participant selection strategy in mobile crowdsensing. IEEE Internet Things J. 6(2), 3202\u20133211 (2019)","journal-title":"IEEE Internet Things J."},{"key":"11_CR17","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1016\/j.comnet.2018.06.013","volume":"142","author":"S Bradai","year":"2018","unstructured":"Bradai, S., Khemakhem, S., Jamaiel, M.: Real-time and energy aware opportunistic mobile crowdsensing framework based on people\u2019s connectivity habits. Comput. Netw. 142, 179\u2013193 (2018)","journal-title":"Comput. Netw."},{"issue":"6","key":"11_CR18","doi-asserted-by":"publisher","first-page":"965","DOI":"10.1109\/TSMC.2016.2523902","volume":"47","author":"L Wang","year":"2017","unstructured":"Wang, L., Zhang, D., Xiong, H., et al.: ecoSense: minimize participants\u2019 total 3G data cost in mobile crowdsensing using opportunistic relays. IEEE Trans. Syst. Man Cybern. -Syst. 47(6), 965\u2013978 (2017)","journal-title":"IEEE Trans. Syst. Man Cybern. -Syst."},{"key":"11_CR19","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1016\/j.comnet.2019.03.020","volume":"156","author":"Z Peng","year":"2019","unstructured":"Peng, Z., Gui, X., An, J., et al.: Multi-task oriented data diffusion and transmission paradigm in crowdsensing based on city public traffic. Comput. Netw. 156, 41\u201351 (2019)","journal-title":"Comput. Netw."},{"key":"11_CR20","doi-asserted-by":"crossref","unstructured":"Xu, L., Hao, X., Lane, N.D., et al.: More with less: lowering user burden in mobile crowdsourcing through compressive sensing. ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp, pp. 659\u2013670 (2015)","DOI":"10.1145\/2750858.2807523"},{"key":"11_CR21","doi-asserted-by":"crossref","unstructured":"Hao, X., Xu, L., Lane, N.D., et al.: Density-aware compressive crowdsensing. In: 16th ACM\/IEEE International Conference on Information Processing in Sensor Networks, IPSN, pp. 29\u201339 (2017)","DOI":"10.1145\/3055031.3055081"},{"issue":"3","key":"11_CR22","doi-asserted-by":"publisher","first-page":"1802","DOI":"10.1109\/JIOT.2019.2957399","volume":"7","author":"WB Liu","year":"2020","unstructured":"Liu, W.B., Yang, Y.J., Wang, E., et al.: User recruitment for enhancing data inference accuracy in sparse mobile crowdsensing. IEEE Internet Things 7(3), 1802\u20131804 (2020)","journal-title":"IEEE Internet Things"},{"key":"11_CR23","doi-asserted-by":"publisher","first-page":"2735","DOI":"10.1109\/TIFS.2020.2975925","volume":"15","author":"LY Wang","year":"2020","unstructured":"Wang, L.Y., Zhang, D.Q., Yang, D.Q., et al.: Sparse mobile crowdsensing with differential and distortion location privacy. IEEE Trans. Inf. Forensics Secur. 15, 2735\u20132749 (2020)","journal-title":"IEEE Trans. Inf. Forensics Secur."},{"key":"11_CR24","unstructured":"Gao, L., Yao, Z., Li, Gao, Chen, Q.: Research on cost control of mobile crowdsoucing based on compressive sensing in environmental information monitoring. J. Chin. Mini-Micro Comput. Syst. 43(02), 443\u2013448 (2022)"},{"key":"11_CR25","volume-title":"Machine learning","author":"Z Zhou","year":"2016","unstructured":"Zhou, Z.: Machine learning. Tsinghua University Press, Beijing (2016)"},{"issue":"4","key":"11_CR26","doi-asserted-by":"publisher","first-page":"1289","DOI":"10.1109\/TIT.2006.871582","volume":"52","author":"D Donoho","year":"2006","unstructured":"Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289\u20131306 (2006)","journal-title":"IEEE Trans. Inf. Theory"},{"issue":"12","key":"11_CR27","doi-asserted-by":"publisher","first-page":"5406","DOI":"10.1109\/TIT.2006.885507","volume":"52","author":"EJ Candes","year":"2006","unstructured":"Candes, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inf. Theory 52(12), 5406\u20135425 (2006)","journal-title":"IEEE Trans. Inf. Theory"},{"key":"11_CR28","doi-asserted-by":"publisher","first-page":"102","DOI":"10.1016\/j.comnet.2019.06.010","volume":"161","author":"W Liu","year":"2019","unstructured":"Liu, W., Wang, L., Wang, E., et al.: Reinforcement learning-based cell selection in sparse mobile crowdsensing. Comput. Netw. 161, 102\u2013114 (2019)","journal-title":"Comput. Netw."},{"key":"11_CR29","doi-asserted-by":"publisher","first-page":"82066","DOI":"10.1109\/ACCESS.2019.2924184","volume":"7","author":"W Liu","year":"2019","unstructured":"Liu, W., Yang, Y., Wang, E., et al.: Multi-dimensional urban sensing in sparse mobile crowdsensing. IEEE Access 7, 82066\u201382079 (2019)","journal-title":"IEEE Access"}],"container-title":["Communications in Computer and Information Science","Computer Supported Cooperative Work and Social Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-99-2385-4_11","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,5,12]],"date-time":"2023-05-12T14:05:26Z","timestamp":1683900326000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-99-2385-4_11"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9789819923847","9789819923854"],"references-count":29,"URL":"https:\/\/doi.org\/10.1007\/978-981-99-2385-4_11","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"13 May 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ChineseCSCW","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"CCF Conference on Computer Supported Cooperative Work and Social Computing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Datong","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 September 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25 September 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"chinesecscw2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/conf.scholat.com\/ccscw\/2022","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"211","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"60","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}