{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T02:20:15Z","timestamp":1726194015957},"publisher-location":"Singapore","reference-count":34,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789819916382"},{"type":"electronic","value":"9789819916399"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-981-99-1639-9_14","type":"book-chapter","created":{"date-parts":[[2023,4,14]],"date-time":"2023-04-14T03:02:39Z","timestamp":1681441359000},"page":"165-176","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Graph Attention Transformer Network for\u00a0Robust Visual Tracking"],"prefix":"10.1007","author":[{"given":"Libo","family":"Wang","sequence":"first","affiliation":[]},{"given":"Si","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Zhen","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Da-Han","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Shunzhi","family":"Zhu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,4,15]]},"reference":[{"key":"14_CR1","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"850","DOI":"10.1007\/978-3-319-48881-3_56","volume-title":"Computer Vision \u2013 ECCV 2016 Workshops","author":"L Bertinetto","year":"2016","unstructured":"Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., J\u00e9gou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850\u2013865. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-48881-3_56"},{"key":"14_CR2","doi-asserted-by":"publisher","first-page":"365","DOI":"10.1016\/j.neucom.2022.03.031","volume":"491","author":"S Chen","year":"2022","unstructured":"Chen, S., Wang, L., Wang, Z., Yan, Y., Wang, D.H., Zhu, S.: Learning meta-adversarial features via multi-stage adaptation network for robust visual object tracking. Neurocomputing 491, 365\u2013381 (2022)","journal-title":"Neurocomputing"},{"key":"14_CR3","doi-asserted-by":"crossref","unstructured":"Chen, X., Yan, B., Zhu, J., Wang, D., Yang, X., Lu, H.: Transformer tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8126\u20138135 (2021)","DOI":"10.1109\/CVPR46437.2021.00803"},{"key":"14_CR4","unstructured":"Cui, Y., Jiang, C., Wang, L., Wu, G.: Fully convolutional online tracking. arXiv preprint arXiv:2004.07109 (2020)"},{"key":"14_CR5","unstructured":"Cui, Y., Jiang, C., Wang, L., Wu, G.: Target transformed regression for accurate tracking. arXiv preprint arXiv:2104.00403 (2021)"},{"key":"14_CR6","doi-asserted-by":"crossref","unstructured":"Cui, Y., Jiang, C., Wang, L., Wu, G.: MixFormer: end-to-end tracking with iterative mixed attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2022)","DOI":"10.1109\/CVPR52688.2022.01324"},{"key":"14_CR7","doi-asserted-by":"crossref","unstructured":"Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M.: Convolutional features for correlation filter based visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 58\u201366 (2015)","DOI":"10.1109\/ICCVW.2015.84"},{"key":"14_CR8","doi-asserted-by":"crossref","unstructured":"Du, F., Liu, P., Zhao, W., Tang, X.: Correlation-guided attention for corner detection based visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6835\u20136844 (2020)","DOI":"10.1109\/CVPR42600.2020.00687"},{"key":"14_CR9","doi-asserted-by":"crossref","unstructured":"Fan, H., et al.: LaSOT: a high-quality benchmark for large-scale single object tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5374\u20135383 (2019)","DOI":"10.1109\/CVPR.2019.00552"},{"key":"14_CR10","doi-asserted-by":"crossref","unstructured":"Fu, Z., Liu, Q., Fu, Z., Wang, Y.: STMTrack: template-free visual tracking with space-time memory networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13774\u201313783 (2021)","DOI":"10.1109\/CVPR46437.2021.01356"},{"key":"14_CR11","doi-asserted-by":"crossref","unstructured":"Guo, D., Shao, Y., Cui, Y., Wang, Z., Zhang, L., Shen, C.: Graph attention tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9543\u20139552 (2021)","DOI":"10.1109\/CVPR46437.2021.00942"},{"issue":"5","key":"14_CR12","doi-asserted-by":"publisher","first-page":"1562","DOI":"10.1109\/TPAMI.2019.2957464","volume":"43","author":"L Huang","year":"2021","unstructured":"Huang, L., Zhao, X., Huang, K.: GOT-10k: a large high-diversity benchmark for generic object tracking in the wild. IEEE Trans. Pattern Anal. Mach. Intell. 43(5), 1562\u20131577 (2021)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"14_CR13","doi-asserted-by":"crossref","unstructured":"Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: SiamRPN++: evolution of siamese visual tracking with very deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4282\u20134291 (2019)","DOI":"10.1109\/CVPR.2019.00441"},{"key":"14_CR14","doi-asserted-by":"crossref","unstructured":"Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8971\u20138980 (2018)","DOI":"10.1109\/CVPR.2018.00935"},{"key":"14_CR15","doi-asserted-by":"crossref","unstructured":"Li, P., Chen, B., Ouyang, W., Wang, D., Yang, X., Lu, H.: GradNet: gradient-guided network for visual object tracking. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 6162\u20136171 (2019)","DOI":"10.1109\/ICCV.2019.00626"},{"key":"14_CR16","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"740","DOI":"10.1007\/978-3-319-10602-1_48","volume-title":"Computer Vision \u2013 ECCV 2014","author":"T-Y Lin","year":"2014","unstructured":"Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740\u2013755. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10602-1_48"},{"key":"14_CR17","doi-asserted-by":"crossref","unstructured":"Lukezic, A., Matas, J., Kristan, M.: D3S - a discriminative single shot segmentation tracker. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7131\u20137140 (2020)","DOI":"10.1109\/CVPR42600.2020.00716"},{"key":"14_CR18","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"445","DOI":"10.1007\/978-3-319-46448-0_27","volume-title":"Computer Vision \u2013 ECCV 2016","author":"M Mueller","year":"2016","unstructured":"Mueller, M., Smith, N., Ghanem, B.: A benchmark and simulator for UAV tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 445\u2013461. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46448-0_27"},{"key":"14_CR19","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"310","DOI":"10.1007\/978-3-030-01246-5_19","volume-title":"Computer Vision \u2013 ECCV 2018","author":"M M\u00fcller","year":"2018","unstructured":"M\u00fcller, M., Bibi, A., Giancola, S., Alsubaihi, S., Ghanem, B.: TrackingNet: a large-scale dataset and benchmark for object tracking in the wild. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 310\u2013327. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01246-5_19"},{"key":"14_CR20","doi-asserted-by":"crossref","unstructured":"Voigtlaender, P., Luiten, J., Torr, P.H.S., Leibe, B.: Siam R-CNN: visual tracking by re-detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6577\u20136587 (2020)","DOI":"10.1109\/CVPR42600.2020.00661"},{"key":"14_CR21","doi-asserted-by":"crossref","unstructured":"Wang, N., Zhou, W., Wang, J., Li, H.: Transformer meets tracker: exploiting temporal context for robust visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)","DOI":"10.1109\/CVPR46437.2021.00162"},{"key":"14_CR22","doi-asserted-by":"crossref","unstructured":"Wang, Z., Liu, L., Duan, Y., Kong, Y., Tao, D.: Continual learning with lifelong vision transformer. In: CVPR, pp. 171\u2013181 (2022)","DOI":"10.1109\/CVPR52688.2022.00027"},{"key":"14_CR23","doi-asserted-by":"crossref","unstructured":"Wang, Z., Liu, L., Duan, Y., Tao, D.: SIN: semantic inference network for few-shot streaming label learning. IEEE Trans. Neural Netw. Learn. Syst. 1\u201314 (2022)","DOI":"10.1109\/TNNLS.2022.3162747"},{"key":"14_CR24","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"631","DOI":"10.1007\/978-3-031-20044-1_36","volume-title":"ECCV 2022","author":"Z Wang","year":"2022","unstructured":"Wang, Z., Liu, L., Kong, Y., Guo, J., Tao, D.: Online continual learning with contrastive vision transformer. In: Avidan, S., Brostow, G., Ciss\u00e9, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13680, pp. 631\u2013650. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-20044-1_36"},{"key":"14_CR25","unstructured":"Wang, Z., Liu, L., Tao, D.: Deep streaming label learning. In: International Conference on Machine Learning (ICML), vol. 119, pp. 9963\u20139972 (2020)"},{"issue":"9","key":"14_CR26","doi-asserted-by":"publisher","first-page":"1834","DOI":"10.1109\/TPAMI.2014.2388226","volume":"37","author":"Y Wu","year":"2015","unstructured":"Wu, Y., Lim, J., Yang, M.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834\u20131848 (2015)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"14_CR27","unstructured":"Xie, T., Liu, M., Deng, J., Cheng, X., Wang, X., Liu, M.: Focuseddropout for convolutional neural network. arXiv preprint arXiv:2103.15425 (2021)"},{"key":"14_CR28","doi-asserted-by":"crossref","unstructured":"Xu, Y., Wang, Z., Li, Z., Ye, Y., Yu, G.: SiamFC++: towards robust and accurate visual tracking with target estimation guidelines. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 12549\u201312556. AAAI Press (2020)","DOI":"10.1609\/aaai.v34i07.6944"},{"key":"14_CR29","doi-asserted-by":"crossref","unstructured":"Yan, B., Peng, H., Fu, J., Wang, D., Lu, H.: Learning spatio-temporal transformer for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 10428\u201310437 (2021)","DOI":"10.1109\/ICCV48922.2021.01028"},{"key":"14_CR30","unstructured":"Yang, J., et al.: GraphFormers: GNN-nested transformers for representation learning on textual graph. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 28798\u201328810 (2021)"},{"key":"14_CR31","doi-asserted-by":"crossref","unstructured":"Yu, B., et al.: High-performance discriminative tracking with transformers. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 9836\u20139845 (2021)","DOI":"10.1109\/ICCV48922.2021.00971"},{"key":"14_CR32","doi-asserted-by":"crossref","unstructured":"Zhang, Z., Liu, Y., Wang, X., Li, B., Hu, W.: Learn to match: automatic matching network design for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 13319\u201313328 (2021)","DOI":"10.1109\/ICCV48922.2021.01309"},{"key":"14_CR33","doi-asserted-by":"crossref","unstructured":"Zhang, Z., Peng, H.: Deeper and wider siamese networks for real-time visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4591\u20134600 (2019)","DOI":"10.1109\/CVPR.2019.00472"},{"key":"14_CR34","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"771","DOI":"10.1007\/978-3-030-58589-1_46","volume-title":"Computer Vision \u2013 ECCV 2020","author":"Z Zhang","year":"2020","unstructured":"Zhang, Z., Peng, H., Fu, J., Li, B., Hu, W.: Ocean: object-aware anchor-free tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 771\u2013787. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58589-1_46"}],"container-title":["Communications in Computer and Information Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-99-1639-9_14","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,4,14]],"date-time":"2023-04-14T03:26:56Z","timestamp":1681442816000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-99-1639-9_14"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9789819916382","9789819916399"],"references-count":34,"URL":"https:\/\/doi.org\/10.1007\/978-981-99-1639-9_14","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"15 April 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"New Delhi","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"India","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 November 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/iconip2022.apnns.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easy Chair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"810","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"359","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"44% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.65","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"ICONIP 2022 consists of a two-volume set, LNCS & CCIS, which includes 146 and 213 papers","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}