{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,2]],"date-time":"2024-11-02T23:40:22Z","timestamp":1730590822581,"version":"3.28.0"},"publisher-location":"Singapore","reference-count":38,"publisher":"Springer Nature Singapore","isbn-type":[{"value":"9789819787944","type":"print"},{"value":"9789819787951","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T00:00:00Z","timestamp":1730592000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T00:00:00Z","timestamp":1730592000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T00:00:00Z","timestamp":1730592000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T00:00:00Z","timestamp":1730592000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-981-97-8795-1_36","type":"book-chapter","created":{"date-parts":[[2024,11,2]],"date-time":"2024-11-02T23:03:08Z","timestamp":1730588588000},"page":"533-548","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["PoseVR: Structure-Aware Hybrid Full-Body Pose Estimation in Virtual Reality"],"prefix":"10.1007","author":[{"given":"Yinghao","family":"Yang","sequence":"first","affiliation":[]},{"given":"Sanyi","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Long","family":"Ye","sequence":"additional","affiliation":[]},{"given":"Neng","family":"Rao","sequence":"additional","affiliation":[]},{"given":"Xudong","family":"Luo","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,11,3]]},"reference":[{"key":"36_CR1","doi-asserted-by":"crossref","unstructured":"Ashtari, N., Bunt, A., McGrenere, J., Nebeling, M., Chilana, P.K.: Creating augmented and virtual reality applications: Current practices, challenges, and opportunities. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (CHI), pp. 1\u201313 (2020)","DOI":"10.1145\/3313831.3376722"},{"key":"36_CR2","doi-asserted-by":"publisher","DOI":"10.1016\/j.compedu.2019.103778","volume":"147","author":"J Radianti","year":"2020","unstructured":"Radianti, J., Majchrzak, T.A., Fromm, J., Wohlgenannt, I.: A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Comput. Educ. 147, 103778 (2020)","journal-title":"Comput. Educ."},{"issue":"10s","key":"36_CR3","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3508361","volume":"54","author":"D Martin","year":"2022","unstructured":"Martin, D., Malpica, S., Gutierrez, D., Masia, B., Serrano, A.: Multimodality in vr: A survey. ACM Comput. Surv. (CSUR) 54(10s), 1\u201336 (2022)","journal-title":"ACM Comput. Surv. (CSUR)"},{"key":"36_CR4","doi-asserted-by":"crossref","unstructured":"Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-fine volumetric prediction for single-image 3d human pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7025\u20137034 (2017)","DOI":"10.1109\/CVPR.2017.139"},{"key":"36_CR5","doi-asserted-by":"crossref","unstructured":"Pavllo, D., Feichtenhofer, C., Grangier, D., Auli, M.: 3d human pose estimation in video with temporal convolutions and semi-supervised training. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7753\u20137762 (2019)","DOI":"10.1109\/CVPR.2019.00794"},{"issue":"6","key":"36_CR6","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3272127.3275108","volume":"37","author":"Y Huang","year":"2018","unstructured":"Huang, Y., Kaufmann, M., Aksan, E., Black, M.J., Hilliges, O., Pons-Moll, G.: Deep inertial poser: Learning to reconstruct human pose from sparse inertial measurements in real time. ACM Trans. Graph. (TOG) 37(6), 1\u201315 (2018)","journal-title":"ACM Trans. Graph. (TOG)"},{"key":"36_CR7","doi-asserted-by":"crossref","unstructured":"Li, S., Chan, A.B.: 3d human pose estimation from monocular images with deep convolutional neural network. In: Proceedings of the 12th Asian Conference on Computer Vision(ACCV), pp. 332\u2013347. Springer (2015)","DOI":"10.1007\/978-3-319-16808-1_23"},{"issue":"4","key":"36_CR8","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3072959.3073596","volume":"36","author":"D Mehta","year":"2017","unstructured":"Mehta, D., Sridhar, S., Sotnychenko, O., Rhodin, H., Shafiei, M., Seidel, H.-P., Xu, W., Casas, D., Theobalt, C.: Vnect: Real-time 3d human pose estimation with a single rgb camera. ACM Trans. Graph. (TOG) 36(4), 1\u201314 (2017)","journal-title":"ACM Trans. Graph. (TOG)"},{"issue":"4","key":"36_CR9","doi-asserted-by":"publisher","first-page":"82","DOI":"10.1145\/3386569.3392410","volume":"39","author":"D Mehta","year":"2020","unstructured":"Mehta, D., Sotnychenko, O., Mueller, F., Xu, W., Elgharib, M., Fua, P., Seidel, H.-P., Rhodin, H., Pons-Moll, G., Theobalt, C.: Xnect: Real-time multi-person 3d motion capture with a single rgb camera. ACM Trans. Graph. (TOG) 39(4), 82\u20131 (2020)","journal-title":"ACM Trans. Graph. (TOG)"},{"key":"36_CR10","unstructured":"Zheng, C., Wu, W., Chen, C., Yang, T., Zhu, S., Shen, J., Kehtarnavaz, N., Shah, M.: Deep learning-based human pose estimation: A survey. ArXiv preprint arXiv:2012.13392 (2020)"},{"key":"36_CR11","doi-asserted-by":"crossref","unstructured":"Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3d human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2640\u20132649 (2017)","DOI":"10.1109\/ICCV.2017.288"},{"key":"36_CR12","doi-asserted-by":"crossref","unstructured":"Zhou, K., Han, X., Jiang, N., Jia, K., Lu, J.: Hemlets pose: Learning part-centric heatmap triplets for accurate 3d human pose estimation. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision (ICCV), pp. 2344\u20132353 (2019)","DOI":"10.1109\/ICCV.2019.00243"},{"key":"36_CR13","doi-asserted-by":"crossref","unstructured":"Habibie, I., Xu, W., Mehta, D., Pons-Moll, G., Theobalt, C.: In the wild human pose estimation using explicit 2d features and intermediate 3d representations. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10\u00a0905\u201310\u00a0914 (2019)","DOI":"10.1109\/CVPR.2019.01116"},{"key":"36_CR14","doi-asserted-by":"crossref","unstructured":"Fang, H.-S., Xu, Y., Wang, W., Liu, X., Zhu, S.-C.: Learning pose grammar to encode human body configuration for 3d pose estimation. Proceed. AAAI Conf. Artif. Intell. (AAAI) 32(1) (2018)","DOI":"10.1609\/aaai.v32i1.12270"},{"key":"36_CR15","doi-asserted-by":"crossref","unstructured":"Zheng, C., Zhu, S., Mendieta, M., Yang, T., Chen, C., Ding, Z.: 3d human pose estimation with spatial and temporal transformers. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision (ICCV), pp. 11\u00a0656\u201311\u00a0665 (2021)","DOI":"10.1109\/ICCV48922.2021.01145"},{"key":"36_CR16","doi-asserted-by":"crossref","unstructured":"Li, W., Liu, H., Ding, R., Liu, M., Wang, P., Yang, W.: Exploiting temporal contexts with strided transformer for 3d human pose estimation. In: IEEE Transactions on Multimedia (TMM) (2022)","DOI":"10.1109\/TMM.2022.3141231"},{"key":"36_CR17","doi-asserted-by":"crossref","unstructured":"Shan, W., Liu, Z., Zhang, X., Wang, S., Ma, S., Gao, W.: P-stmo: Pre-trained spatial temporal many-to-one model for 3d human pose estimation. In: Proceedings of the 17th European Conference on Computer Vision (ECCV), pp. 461\u2013478. Springer (2022)","DOI":"10.1007\/978-3-031-20065-6_27"},{"key":"36_CR18","doi-asserted-by":"crossref","unstructured":"Li, W., Liu, H., Tang, H., Wang, P., Van\u00a0Gool, L.: Mhformer: Multi-hypothesis transformer for 3d human pose estimation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13\u00a0147\u201313\u00a0156 (2022)","DOI":"10.1109\/CVPR52688.2022.01280"},{"key":"36_CR19","unstructured":"Movella.: Movella is the leading innovator in 3d motion tracking products. https:\/\/www.movella.com\/ (2024). Last accessed 18 March 2024"},{"key":"36_CR20","unstructured":"Rokoko.: Full performance capture: track body, finger, face motions. https:\/\/www.rokoko.com\/ (2024). Last accessed 18 March 2024"},{"key":"36_CR21","doi-asserted-by":"crossref","unstructured":"Von\u00a0Marcard, T., Rosenhahn, B., Black, M.J., Pons-Moll, G.: Sparse inertial poser: Automatic 3d human pose estimation from sparse imus. In: Computer Graphics Forum (CGF), vol.\u00a036, no.\u00a02. Wiley Online Library, pp. 349\u2013360 (2017)","DOI":"10.1111\/cgf.13131"},{"issue":"4","key":"36_CR22","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3450626.3459786","volume":"40","author":"X Yi","year":"2021","unstructured":"Yi, X., Zhou, Y., Xu, F.: Transpose: Real-time 3d human translation and pose estimation with six inertial sensors. ACM Trans. Graph. (TOG) 40(4), 1\u201313 (2021)","journal-title":"ACM Trans. Graph. (TOG)"},{"key":"36_CR23","doi-asserted-by":"crossref","unstructured":"Yi, X., Zhou, Y., Habermann, M., Shimada, S., Golyanik, V., Theobalt, C., Xu, F.: Physical inertial poser (pip): Physics-aware real-time human motion tracking from sparse inertial sensors. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13\u00a0167\u201313\u00a0178 (2022)","DOI":"10.1109\/CVPR52688.2022.01282"},{"key":"36_CR24","doi-asserted-by":"crossref","unstructured":"Jiang, Y., Ye, Y., Gopinath, D., Won, J., Winkler, A.W., Liu, C.K.: Transformer inertial poser: Real-time human motion reconstruction from sparse imus with simultaneous terrain generation. In: Proceedings of SIGGRAPH Asia 2022 (SIGGRAPH Asia), pp. 1\u20139 (2022)","DOI":"10.1145\/3550469.3555428"},{"key":"36_CR25","doi-asserted-by":"crossref","unstructured":"Jiang, J., Streli, P., Qiu, H., Fender, A., Laich, L., Snape, P., Holz, C.: Avatarposer: Articulated full-body pose tracking from sparse motion sensing. In: European Conference on Computer Vision, pp. 443\u2013460. Springer (2022)","DOI":"10.1007\/978-3-031-20065-6_26"},{"key":"36_CR26","unstructured":"Zheng, X., Su, Z., Wen, C., Xue, Z., Jin, X.: Realistic full-body tracking from sparse observations via joint-level modeling. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 14\u00a0678\u201314\u00a0688 (2023)"},{"key":"36_CR27","doi-asserted-by":"crossref","unstructured":"Du, Y., Kips, R., Pumarola, A., Starke, S., Thabet, A., Sanakoyeu, A.: Avatars grow legs: Generating smooth human motion from sparse tracking inputs with diffusion model. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 481\u2013490 (2023)","DOI":"10.1109\/CVPR52729.2023.00054"},{"key":"36_CR28","doi-asserted-by":"crossref","unstructured":"Pons-Moll, G., Baak, A., Gall, J., Leal-Taixe, L., Mueller, M., Seidel, H.-P., Rosenhahn, B.: Outdoor human motion capture using inverse kinematics and von mises-fisher sampling. In: 2011 International Conference on Computer Vision (ICCV), pp. 1243\u20131250. IEEE (2011)","DOI":"10.1109\/ICCV.2011.6126375"},{"key":"36_CR29","doi-asserted-by":"crossref","unstructured":"Trumble, M., Gilbert, A., Malleson, C., Hilton, A., Collomosse, J.: Total capture: 3d human pose estimation fusing video and inertial sensors. In: Proceedings of 28th British Machine Vision Conference (BMVC), pp. 1\u201313 (2017)","DOI":"10.5244\/C.31.14"},{"key":"36_CR30","doi-asserted-by":"crossref","unstructured":"Huang, F., Zeng, A., Liu, M., Lai, Q., Xu, Q.: Deepfuse: An imu-aware network for real-time 3d human pose estimation from multi-view image. In: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 429\u2013438 (2020)","DOI":"10.1109\/WACV45572.2020.9093526"},{"key":"36_CR31","doi-asserted-by":"crossref","unstructured":"Pan, S., Ma, Q., Yi, X., Hu, W., Wang, X., Zhou, X., Li, J., Xu, F.: Fusing monocular images and sparse imu signals for real-time human motion capture. In: SIGGRAPH Asia. Conf. Papers 2023, 1\u201311 (2023)","DOI":"10.1145\/3610548.3618145"},{"key":"36_CR32","doi-asserted-by":"crossref","unstructured":"Yang, J., Chen, T., Qin, F., Lam, M.S., Landay, J.A.: Hybridtrak: Adding full-body tracking to vr using an off-the-shelf webcam. In: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (CHI), pp. 1\u201313 (2022)","DOI":"10.1145\/3491102.3502045"},{"key":"36_CR33","doi-asserted-by":"crossref","unstructured":"Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3. 6m: Large scale datasets and predictive methods for 3d human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 36(7), 1325\u20131339 (2013)","DOI":"10.1109\/TPAMI.2013.248"},{"key":"36_CR34","doi-asserted-by":"crossref","unstructured":"Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., Sun, J.: Cascaded pyramid network for multi-person pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7103\u20137112 (2018)","DOI":"10.1109\/CVPR.2018.00742"},{"key":"36_CR35","doi-asserted-by":"crossref","unstructured":"Zhao, Q., Zheng, C., Liu, M., Wang, P., Chen, C.: Poseformerv2: Exploring frequency domain for efficient and robust 3d human pose estimation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 8877\u20138886 (2023)","DOI":"10.1109\/CVPR52729.2023.00857"},{"key":"36_CR36","doi-asserted-by":"crossref","unstructured":"Tang, Z., Qiu, Z., Hao, Y., Hong, R., Yao, T.: 3d human pose estimation with spatio-temporal criss-cross attention. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 4790\u20134799 (2023)","DOI":"10.1109\/CVPR52729.2023.00464"},{"key":"36_CR37","doi-asserted-by":"crossref","unstructured":"Trumble, M., Gilbert, A., Hilton, A., Collomosse, J.: Deep autoencoder for combined human pose estimation and body model upscaling. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 784\u2013800 (2018)","DOI":"10.1007\/978-3-030-01249-6_48"},{"key":"36_CR38","doi-asserted-by":"crossref","unstructured":"Bao, Y., Zhao, X., Qian, D.: Fusepose: Imu-vision sensor fusion in kinematic space for parametric human pose estimation. In: IEEE Transactions on Multimedia (TMM) (2022)","DOI":"10.1109\/TMM.2022.3227472"}],"container-title":["Lecture Notes in Computer Science","Pattern Recognition and Computer Vision"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-97-8795-1_36","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,2]],"date-time":"2024-11-02T23:06:43Z","timestamp":1730588803000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-97-8795-1_36"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11,3]]},"ISBN":["9789819787944","9789819787951"],"references-count":38,"URL":"https:\/\/doi.org\/10.1007\/978-981-97-8795-1_36","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,11,3]]},"assertion":[{"value":"3 November 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PRCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Chinese Conference on Pattern Recognition and Computer Vision (PRCV)","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Urumqi","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 October 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ccprcv2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2024.prcv.cn\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}