{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,2]],"date-time":"2024-11-02T23:40:27Z","timestamp":1730590827624,"version":"3.28.0"},"publisher-location":"Singapore","reference-count":24,"publisher":"Springer Nature Singapore","isbn-type":[{"value":"9789819787944","type":"print"},{"value":"9789819787951","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T00:00:00Z","timestamp":1730592000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T00:00:00Z","timestamp":1730592000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T00:00:00Z","timestamp":1730592000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T00:00:00Z","timestamp":1730592000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-981-97-8795-1_15","type":"book-chapter","created":{"date-parts":[[2024,11,2]],"date-time":"2024-11-02T23:02:34Z","timestamp":1730588554000},"page":"219-231","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Performance Evaluation of\u00a0Anomaly Detection with\u00a0a\u00a0New Battery Surface Anomaly Dataset"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0009-0005-4054-1594","authenticated-orcid":false,"given":"Yijun","family":"Zhou","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3074-5586","authenticated-orcid":false,"given":"Zilu","family":"Ying","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0001-6897-2709","authenticated-orcid":false,"given":"Haolin","family":"Lv","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0009-7576-6442","authenticated-orcid":false,"given":"Xinru","family":"Li","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0007-0189-4965","authenticated-orcid":false,"given":"Jie","family":"You","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0000-6998-4915","authenticated-orcid":false,"given":"Yingwen","family":"Chen","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0009-2783-4762","authenticated-orcid":false,"given":"Kanghong","family":"Tan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,11,3]]},"reference":[{"key":"15_CR1","unstructured":"Ahuja, N., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. arxiv 2019. arXiv preprint arXiv:1909.11786"},{"issue":"2","key":"15_CR2","doi-asserted-by":"publisher","first-page":"139","DOI":"10.1111\/j.2517-6161.1982.tb01195.x","volume":"44","author":"J Aitchison","year":"1982","unstructured":"Aitchison, J.: The statistical analysis of compositional data. J. Roy. Stat. Soc.: Ser. B (Methodol.) 44(2), 139\u2013160 (1982)","journal-title":"J. Roy. Stat. Soc.: Ser. B (Methodol.)"},{"key":"15_CR3","doi-asserted-by":"crossref","unstructured":"Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad\u2013a comprehensive real-world dataset for unsupervised anomaly detection. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 9592\u20139600 (2019)","DOI":"10.1109\/CVPR.2019.00982"},{"key":"15_CR4","doi-asserted-by":"publisher","DOI":"10.1016\/j.compind.2021.103459","volume":"129","author":"J Bo\u017ei\u010d","year":"2021","unstructured":"Bo\u017ei\u010d, J., Tabernik, D., Sko\u010daj, D.: Mixed supervision for surface-defect detection: From weakly to fully supervised learning. Comput. Ind. 129, 103459 (2021)","journal-title":"Comput. Ind."},{"key":"15_CR5","doi-asserted-by":"crossref","unstructured":"Deng, H., Li, X.: Anomaly detection via reverse distillation from one-class embedding. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 9737\u20139746 (2022)","DOI":"10.1109\/CVPR52688.2022.00951"},{"key":"15_CR6","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1016\/j.asoc.2018.05.018","volume":"70","author":"A Garcia-Garcia","year":"2018","unstructured":"Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Martinez-Gonzalez, P., Garcia-Rodriguez, J.: A survey on deep learning techniques for image and video semantic segmentation. Appl. Soft Comput. 70, 41\u201365 (2018)","journal-title":"Appl. Soft Comput."},{"key":"15_CR7","doi-asserted-by":"crossref","unstructured":"Gudovskiy, D., Ishizaka, S., Kozuka, K.: Cflow-ad: Real-time unsupervised anomaly detection with localization via conditional normalizing flows. In: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision, pp. 98\u2013107 (2022)","DOI":"10.1109\/WACV51458.2022.00188"},{"issue":"1","key":"15_CR8","doi-asserted-by":"publisher","first-page":"85","DOI":"10.1007\/s00371-018-1588-5","volume":"36","author":"Y Huang","year":"2020","unstructured":"Huang, Y., Qiu, C., Yuan, K.: Surface defect saliency of magnetic tile. Vis. Comput. 36(1), 85\u201396 (2020)","journal-title":"Vis. Comput."},{"issue":"7553","key":"15_CR9","doi-asserted-by":"publisher","first-page":"436","DOI":"10.1038\/nature14539","volume":"521","author":"Y LeCun","year":"2015","unstructured":"LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436\u2013444 (2015)","journal-title":"Nature"},{"issue":"1","key":"15_CR10","doi-asserted-by":"publisher","first-page":"104","DOI":"10.1007\/s11633-023-1459-z","volume":"21","author":"J Liu","year":"2024","unstructured":"Liu, J., Xie, G., Wang, J., Li, S., Wang, C., Zheng, F., Jin, Y.: Deep industrial image anomaly detection: a survey. Mach. Intell. Res. 21(1), 104\u2013135 (2024)","journal-title":"Mach. Intell. Res."},{"issue":"2","key":"15_CR11","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3439950","volume":"54","author":"G Pang","year":"2021","unstructured":"Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection: a review. ACM Comput. Surv. (CSUR) 54(2), 1\u201338 (2021)","journal-title":"ACM Comput. Surv. (CSUR)"},{"issue":"1","key":"15_CR12","doi-asserted-by":"publisher","first-page":"73","DOI":"10.1002\/widm.2","volume":"1","author":"PJ Rousseeuw","year":"2011","unstructured":"Rousseeuw, P.J., Hubert, M.: Robust statistics for outlier detection. Wiley Interdiscip. Rev. Data Min. Knowl. Discovery 1(1), 73\u201379 (2011)","journal-title":"Wiley Interdiscip. Rev. Data Min. Knowl. Discovery"},{"key":"15_CR13","doi-asserted-by":"crossref","unstructured":"Ruff, L., Zemlyanskiy, Y., Vandermeulen, R., Schnake, T., Kloft, M.: Self-attentive, multi-context one-class classification for unsupervised anomaly detection on text. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 4061\u20134071 (2019)","DOI":"10.18653\/v1\/P19-1398"},{"key":"15_CR14","doi-asserted-by":"crossref","unstructured":"Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In: Proceedings of the IEEE international Conference on Computer Vision, pp. 843\u2013852 (2017)","DOI":"10.1109\/ICCV.2017.97"},{"key":"15_CR15","unstructured":"Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Elsevier (2006)"},{"key":"15_CR16","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s40537-020-00320-x","volume":"7","author":"S Thudumu","year":"2020","unstructured":"Thudumu, S., Branch, P., Jin, J., Singh, J.: A comprehensive survey of anomaly detection techniques for high dimensional big data. J. Big Data 7, 1\u201330 (2020)","journal-title":"J. Big Data"},{"key":"15_CR17","unstructured":"Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, \u0141., Polosukhin, I.: Attention is all you need. Adv. Neural Inform. Process. Syst. 30 (2017)"},{"key":"15_CR18","unstructured":"Wang, G., Han, S., Ding, E., Huang, D.: Student-teacher feature pyramid matching for anomaly detection. arXiv preprint arXiv:2103.04257 (2021)"},{"key":"15_CR19","doi-asserted-by":"publisher","first-page":"144","DOI":"10.1016\/j.jmsy.2018.01.003","volume":"48","author":"J Wang","year":"2018","unstructured":"Wang, J., Ma, Y., Zhang, L., Gao, R.X., Wu, D.: Deep learning for smart manufacturing: methods and applications. J. Manuf. Syst. 48, 144\u2013156 (2018)","journal-title":"J. Manuf. Syst."},{"key":"15_CR20","unstructured":"Yu, J., Zheng, Y., Wang, X., Li, W., Wu, Y., Zhao, R., Wu, L.: Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows. arXiv preprint arXiv:2111.07677 (2021)"},{"key":"15_CR21","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Zhou, D., Chen, S., Gao, S., Ma, Y.: Single-image crowd counting via multi-column convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 589\u2013597 (2016)","DOI":"10.1109\/CVPR.2016.70"},{"key":"15_CR22","doi-asserted-by":"crossref","unstructured":"Zheng, S., Song, Y., Leung, T., Goodfellow, I.: Improving the robustness of deep neural networks via stability training. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4480\u20134488 (2016)","DOI":"10.1109\/CVPR.2016.485"},{"key":"15_CR23","doi-asserted-by":"crossref","unstructured":"Zhou, Y., Xu, X., Song, J., Shen, F., Shen, H.T.: Msflow: Multiscale flow-based framework for unsupervised anomaly detection. IEEE Transactions on Neural Networks and Learning Systems (2024)","DOI":"10.1109\/TNNLS.2023.3344118"},{"key":"15_CR24","doi-asserted-by":"crossref","unstructured":"Zou, Y., Jeong, J., Pemula, L., Zhang, D., Dabeer, O.: Spot-the-difference self-supervised pre-training for anomaly detection and segmentation. In: European Conference on Computer Vision, pp. 392\u2013408. Springer (2022)","DOI":"10.1007\/978-3-031-20056-4_23"}],"container-title":["Lecture Notes in Computer Science","Pattern Recognition and Computer Vision"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-97-8795-1_15","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,2]],"date-time":"2024-11-02T23:04:07Z","timestamp":1730588647000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-97-8795-1_15"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11,3]]},"ISBN":["9789819787944","9789819787951"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-981-97-8795-1_15","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,11,3]]},"assertion":[{"value":"3 November 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PRCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Chinese Conference on Pattern Recognition and Computer Vision (PRCV)","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Urumqi","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 October 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ccprcv2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2024.prcv.cn\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}