{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,2]],"date-time":"2024-11-02T23:40:29Z","timestamp":1730590829193,"version":"3.28.0"},"publisher-location":"Singapore","reference-count":30,"publisher":"Springer Nature Singapore","isbn-type":[{"value":"9789819787944","type":"print"},{"value":"9789819787951","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T00:00:00Z","timestamp":1730592000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T00:00:00Z","timestamp":1730592000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-981-97-8795-1_14","type":"book-chapter","created":{"date-parts":[[2024,11,2]],"date-time":"2024-11-02T23:01:57Z","timestamp":1730588517000},"page":"203-218","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Benchmarking Multi-Scene Fire and Smoke Detection"],"prefix":"10.1007","author":[{"given":"Xiaoyi","family":"Han","sequence":"first","affiliation":[]},{"given":"Nan","family":"Pu","sequence":"additional","affiliation":[]},{"given":"Zunlei","family":"Feng","sequence":"additional","affiliation":[]},{"given":"Yijun","family":"Bei","sequence":"additional","affiliation":[]},{"given":"Qifei","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Lechao","family":"Cheng","sequence":"additional","affiliation":[]},{"given":"Liang","family":"Xue","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,11,3]]},"reference":[{"key":"14_CR1","doi-asserted-by":"publisher","unstructured":"Safi, A., Ahmad, Z., Jehangiri, A.I., Latip, R., Zaman, S.K.U., Khan, M.A., Ghoniem, R.M.: A fault tolerant surveillance system for fire detection and prevention using Lorawan in smart buildings. Sensors 22(21) (2022). https:\/\/doi.org\/10.3390\/s22218411","DOI":"10.3390\/s22218411"},{"key":"14_CR2","doi-asserted-by":"publisher","unstructured":"Hussain, T., Dai, H., Gueaieb, W., Sicklinger, M., De\u00a0Masi, G.: Uav-based multi-scale features fusion attention for fire detection in smart city ecosystems. In: 2022 IEEE International Smart Cities Conference (ISC2), pp. 1\u20134 (2022). https:\/\/doi.org\/10.1109\/ISC255366.2022.9921824","DOI":"10.1109\/ISC255366.2022.9921824"},{"key":"14_CR3","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2023.120465","volume":"231","author":"H Yar","year":"2023","unstructured":"Yar, H., Khan, Z.A., Ullah, F.U.M., Ullah, W., Baik, S.W.: A modified yolov5 architecture for efficient fire detection in smart cities. Expert Syst. Appl. 231, 120465 (2023). https:\/\/doi.org\/10.1016\/j.eswa.2023.120465","journal-title":"Expert Syst. Appl."},{"key":"14_CR4","doi-asserted-by":"publisher","unstructured":"Aibin, M., Li, Y., Sharma, R., Ling, J., Ye, J., Lu, J., Zhang, J., Coria, L., Huang, X., Yang, Z., Ke, L., Zou, P.: Advancing forest fire risk evaluation: an integrated framework for visualizing area-specific forest fire risks using UAV imagery, object detection and color mapping techniques. Drones 8(2) (2024). https:\/\/doi.org\/10.3390\/drones8020039","DOI":"10.3390\/drones8020039"},{"issue":"3","key":"14_CR5","doi-asserted-by":"publisher","DOI":"10.1155\/2014\/597368","volume":"10","author":"AA Alkhatib","year":"2014","unstructured":"Alkhatib, A.A.: A review on forest fire detection techniques. Int. J. Distrib. Sens. Netw. 10(3), 597368 (2014). https:\/\/doi.org\/10.1155\/2014\/597368","journal-title":"Int. J. Distrib. Sens. Netw."},{"key":"14_CR6","doi-asserted-by":"publisher","unstructured":"Zell, O., P\u00e5lsson, J., Hernandez-Diaz, K., Alonso-Fernandez, F., Nilsson, F.: Image-based fire detection in industrial environments with yolov4. In: Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods\u2014ICPRAM (2022). https:\/\/doi.org\/10.5220\/0011689400003411","DOI":"10.5220\/0011689400003411"},{"key":"14_CR7","doi-asserted-by":"publisher","unstructured":"Du, S., Lv, Z., Wang, L., Zhao, J.: Estnet: efficient spatio-temporal network for industrial smoke detection. In: International Conference on Neural Information Processing pp. 376\u2013387, Springer (2023). https:\/\/doi.org\/10.1007\/978-981-99-8145-8_29","DOI":"10.1007\/978-981-99-8145-8_29"},{"issue":"11","key":"14_CR8","doi-asserted-by":"publisher","DOI":"10.1155\/2013\/185327","volume":"9","author":"Z-J Zhang","year":"2013","unstructured":"Zhang, Z.-J., Fu, J.-S., Chiang, H.-P., Huang, Y.-M.: A novel mechanism for fire detection in subway transportation systems based on wireless sensor networks. Int. J. Distrib. Sens. Netw. 9(11), 185327 (2013). https:\/\/doi.org\/10.1155\/2013\/185327","journal-title":"Int. J. Distrib. Sens. Netw."},{"key":"14_CR9","doi-asserted-by":"publisher","unstructured":"Li, L., Yi, J.: Real-time fire detection for urban tunnels based on multi-source data and transfer learning. In: 4th International Symposium on Computer Engineering and Intelligent Communications (ISCEIC), pp. 27\u201332. IEEE (2023). https:\/\/doi.org\/10.1109\/ISCEIC59030.2023.10271175","DOI":"10.1109\/ISCEIC59030.2023.10271175"},{"key":"14_CR10","unstructured":"DeepQuestAI, (2021). https:\/\/github.com\/DeepQuestAI\/Fire-Smoke-Dataset"},{"key":"14_CR11","doi-asserted-by":"publisher","unstructured":"Toreyin, B.U., Cetin, A.E.: Online detection of fire in video. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1\u20135 (2007). https:\/\/doi.org\/10.1109\/CVPR.2007.383442","DOI":"10.1109\/CVPR.2007.383442"},{"issue":"2","key":"14_CR12","doi-asserted-by":"publisher","first-page":"339","DOI":"10.1109\/TCSVT.2014.2339592","volume":"25","author":"K Dimitropoulos","year":"2015","unstructured":"Dimitropoulos, K., Barmpoutis, P., Grammalidis, N.: Spatio-temporal flame modeling and dynamic texture analysis for automatic video-based fire detection. IEEE Trans. Circ. Syst. Video Technol. 25(2), 339\u2013351 (2015). https:\/\/doi.org\/10.1109\/TCSVT.2014.2339592","journal-title":"IEEE Trans. Circ. Syst. Video Technol."},{"key":"14_CR13","doi-asserted-by":"publisher","unstructured":"Chino, D.Y.T., Avalhais, L.P.S., Rodrigues, J.F., Traina, A.J.M.: Bowfire: detection of fire in still images by integrating pixel color and texture analysis. In: 2015 28th SIBGRAPI Conference on Graphics, Patterns and Images, pp. 95\u2013102 (2015). https:\/\/doi.org\/10.1109\/SIBGRAPI.2015.19","DOI":"10.1109\/SIBGRAPI.2015.19"},{"key":"14_CR14","doi-asserted-by":"publisher","unstructured":"H\u00fcttner, V., Steffens, C.R., da Costa Botelho, S.S., First response fire combat: deep leaning based visible fire detection. In: Latin American Robotics Symposium (LARS) and 2017 Brazilian Symposium on Robotics (SBR), pp. 1\u20136. IEEE (2017). https:\/\/doi.org\/10.1109\/SBR-LARS-R.2017.8215312","DOI":"10.1109\/SBR-LARS-R.2017.8215312"},{"key":"14_CR15","doi-asserted-by":"publisher","first-page":"9237","DOI":"10.1109\/JIOT.2019.2896120","volume":"6","author":"S Khan","year":"2019","unstructured":"Khan, S., Muhammad, K., Mumtaz, S., Baik, S.W., de Albuquerque, V.H.C.: Energy-efficient deep CNN for smoke detection in foggy IoT environment. IEEE Internet Things J. 6, 9237\u20139245 (2019). https:\/\/doi.org\/10.1109\/JIOT.2019.2896120","journal-title":"IEEE Internet Things J."},{"key":"14_CR16","doi-asserted-by":"publisher","first-page":"8467","DOI":"10.1109\/TIP.2020.3016431","volume":"29","author":"S Li","year":"2020","unstructured":"Li, S., Yan, Q., Liu, P.: An efficient fire detection method based on multiscale feature extraction, implicit deep supervision and channel attention mechanism. IEEE Trans. Image Process. 29, 8467\u20138475 (2020). https:\/\/doi.org\/10.1109\/TIP.2020.3016431","journal-title":"IEEE Trans. Image Process."},{"key":"14_CR17","doi-asserted-by":"publisher","first-page":"224","DOI":"10.1016\/j.neucom.2021.01.024","volume":"434","author":"L He","year":"2021","unstructured":"He, L., Gong, X., Zhang, S., Wang, L., Li, F.: Efficient attention based deep fusion CNN for smoke detection in fog environment. Neurocomputing 434, 224\u2013238 (2021). https:\/\/doi.org\/10.1016\/j.neucom.2021.01.024","journal-title":"Neurocomputing"},{"key":"14_CR18","doi-asserted-by":"publisher","first-page":"7889","DOI":"10.1109\/TII.2021.3138752","volume":"18","author":"JS Almeida","year":"2022","unstructured":"Almeida, J.S., Huang, C., Nogueira, F.G., Bhatia, S., de Albuquerque, V.H.C.: Edgefiresmoke: a novel lightweight CNN model for real-time video fire-smoke detection. IEEE Trans. Indus. Inf. 18, 7889\u20137898 (2022). https:\/\/doi.org\/10.1109\/TII.2021.3138752","journal-title":"IEEE Trans. Indus. Inf."},{"key":"14_CR19","doi-asserted-by":"publisher","first-page":"6707","DOI":"10.1007\/s11042-022-13580-x","volume":"82","author":"S Wu","year":"2022","unstructured":"Wu, S., Zhang, X., Liu, R., Li, B.: A dataset for fire and smoke object detection. Multimedia Tools Appl. 82, 6707\u20136726 (2022). https:\/\/doi.org\/10.1007\/s11042-022-13580-x","journal-title":"Multimedia Tools Appl."},{"key":"14_CR20","doi-asserted-by":"publisher","unstructured":"Kim, S.-Y., Muminov, A.: Forest fire smoke detection based on deep learning approaches and unmanned aerial vehicle images. Sensors 23(12) (2023). https:\/\/doi.org\/10.3390\/s23125702","DOI":"10.3390\/s23125702"},{"key":"14_CR21","doi-asserted-by":"publisher","first-page":"223","DOI":"10.1016\/S0065-2687(08)60079-5","volume":"5","author":"JE McDonald","year":"1958","unstructured":"McDonald, J.E.: The physics of cloud modification. Adv. Geophys. 5, 223\u2013303 (1958). https:\/\/doi.org\/10.1016\/S0065-2687(08)60079-5","journal-title":"Adv. Geophys."},{"key":"14_CR22","doi-asserted-by":"publisher","unstructured":"Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single shot multibox detector. In: Computer Vision\u2013ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11\u201314, 2016, Proceedings, Part I 14, pp. 21\u201337. Springer (2016). https:\/\/doi.org\/10.1007\/978-3-319-46448-0_2","DOI":"10.1007\/978-3-319-46448-0_2"},{"key":"14_CR23","doi-asserted-by":"crossref","unstructured":"Lin, T.-Y., Goyal, P., Girshick, R., He, K., Doll\u00e1r, P.: Focal loss for dense object detection, in: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980\u20132988 (2018). arXiv:1708.02002","DOI":"10.1109\/ICCV.2017.324"},{"key":"14_CR24","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR arXiv:1512.03385 (2015)","DOI":"10.1109\/CVPR.2016.90"},{"key":"14_CR25","doi-asserted-by":"crossref","unstructured":"Lin, T.-Y., Doll\u00e1r, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. arXiv:1612.03144 (2017)","DOI":"10.1109\/CVPR.2017.106"},{"key":"14_CR26","doi-asserted-by":"publisher","unstructured":"Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks, Adv. Neural Inform. Process. Syst. 28 (2015). https:\/\/doi.org\/10.1109\/TPAMI.2016.2577031","DOI":"10.1109\/TPAMI.2016.2577031"},{"key":"14_CR27","doi-asserted-by":"publisher","unstructured":"Tian, Z., Shen, C., Chen, H., He, T.: Fcos: fully convolutional one-stage object detection. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 9627\u20139636 (2019). https:\/\/doi.org\/10.1109\/ICCV.2019.00972","DOI":"10.1109\/ICCV.2019.00972"},{"key":"14_CR28","doi-asserted-by":"publisher","unstructured":"Jocher, G.: Ultralytics\/yolov5: v3.1\u2014Bug Fixes and Performance Improvements (2020). https:\/\/doi.org\/10.5281\/zenodo.4154370","DOI":"10.5281\/zenodo.4154370"},{"key":"14_CR29","unstructured":"Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: Yolov4: optimal speed and accuracy of object detection (2020). arXiv:2004.10934"},{"key":"14_CR30","doi-asserted-by":"crossref","unstructured":"Padilla, R., Netto, S., da\u00a0Silva, E.: A survey on performance metrics for object-detection algorithms. In: 2020 International Conference on Systems, Signals and Image Processing (IWSSIP) (2020)","DOI":"10.1109\/IWSSIP48289.2020.9145130"}],"container-title":["Lecture Notes in Computer Science","Pattern Recognition and Computer Vision"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-97-8795-1_14","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,2]],"date-time":"2024-11-02T23:03:49Z","timestamp":1730588629000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-97-8795-1_14"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11,3]]},"ISBN":["9789819787944","9789819787951"],"references-count":30,"URL":"https:\/\/doi.org\/10.1007\/978-981-97-8795-1_14","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,11,3]]},"assertion":[{"value":"3 November 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PRCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Chinese Conference on Pattern Recognition and Computer Vision (PRCV)","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Urumqi","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 October 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ccprcv2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2024.prcv.cn\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}