{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T04:04:37Z","timestamp":1730606677271,"version":"3.28.0"},"publisher-location":"Singapore","reference-count":25,"publisher":"Springer Nature Singapore","isbn-type":[{"value":"9789819784950","type":"print"},{"value":"9789819784967","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T00:00:00Z","timestamp":1730592000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T00:00:00Z","timestamp":1730592000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T00:00:00Z","timestamp":1730592000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T00:00:00Z","timestamp":1730592000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-981-97-8496-7_25","type":"book-chapter","created":{"date-parts":[[2024,11,2]],"date-time":"2024-11-02T06:06:02Z","timestamp":1730527562000},"page":"358-370","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Meply: A Large-scale Dataset and Baseline Evaluations for Metastatic Perirectal Lymph Node Detection and Segmentation"],"prefix":"10.1007","author":[{"given":"Weidong","family":"Guo","sequence":"first","affiliation":[]},{"given":"Hantao","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Shouhong","family":"Wan","sequence":"additional","affiliation":[]},{"given":"Bingbing","family":"Zou","sequence":"additional","affiliation":[]},{"given":"Wanqin","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Chenyang","family":"Qiu","sequence":"additional","affiliation":[]},{"given":"Jun","family":"Li","sequence":"additional","affiliation":[]},{"given":"Peiquan","family":"Jin","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,11,3]]},"reference":[{"key":"25_CR1","unstructured":"Mediastinal lymph node quantification (lnq): Segmentation of heterogeneous ct data. https:\/\/lnq2023.grand-challenge.org\/ (2023)"},{"key":"25_CR2","unstructured":"Segmentation of organs-at-risk and gross tumor volume of npc for radiotherapy planning (segrap2023). https:\/\/segrap2023.grand-challenge.org\/ (2023)"},{"key":"25_CR3","doi-asserted-by":"crossref","unstructured":"Andrearczyk, V., Oreiller, V., Boughdad, S., Rest, C.C.L., Elhalawani, H., Jreige, M., Prior, J.O., Valli\u00e8res, M., Visvikis, D., Hatt, M., et\u00a0al.: Overview of the hecktor challenge at miccai 2021: automatic head and neck tumor segmentation and outcome prediction in pet\/ct images. In: 3D Head and Neck Tumor Segmentation in PET\/CT Challenge, pp. 1\u201337. Springer (2021)","DOI":"10.1007\/978-3-030-98253-9_1"},{"issue":"1","key":"25_CR4","first-page":"44","volume":"11","author":"D Bouget","year":"2023","unstructured":"Bouget, D., Pedersen, A., Vanel, J., Leira, H.O., Lang\u00f8, T.: Mediastinal lymph nodes segmentation using 3d convolutional neural network ensembles and anatomical priors guiding. Comput. Methods Biomech. Biomed. Eng.: Imaging Visual. 11(1), 44\u201358 (2023)","journal-title":"Comput. Methods Biomech. Biomed. Eng.: Imaging Visual."},{"key":"25_CR5","doi-asserted-by":"crossref","unstructured":"Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., Wang, M.: Swin-unet: Unet-like pure transformer for medical image segmentation. In: European Conference on Computer Vision, pp. 205\u2013218. Springer (2022)","DOI":"10.1007\/978-3-031-25066-8_9"},{"issue":"5","key":"25_CR6","doi-asserted-by":"publisher","first-page":"2317","DOI":"10.1002\/mp.13942","volume":"47","author":"CE Cardenas","year":"2020","unstructured":"Cardenas, C.E., Mohamed, A.S., Yang, J., Gooding, M., Veeraraghavan, H., Kalpathy-Cramer, J., Ng, S.P., Ding, Y., Wang, J., Lai, S.Y., et al.: Head and neck cancer patient images for determining auto-segmentation accuracy in t2-weighted magnetic resonance imaging through expert manual segmentations. Med. Phys. 47(5), 2317\u20132322 (2020)","journal-title":"Med. Phys."},{"key":"25_CR7","unstructured":"Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A.L., Zhou, Y.: Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)"},{"key":"25_CR8","doi-asserted-by":"crossref","unstructured":"Huang, X., Deng, Z., Li, D., Yuan, X., Fu, Y.: Missformer: an effective transformer for 2d medical image segmentation. IEEE Trans. Med. Imaging (2022)","DOI":"10.1109\/TMI.2022.3230943"},{"key":"25_CR9","doi-asserted-by":"publisher","first-page":"74","DOI":"10.1016\/j.neunet.2019.08.025","volume":"121","author":"N Ibtehaz","year":"2020","unstructured":"Ibtehaz, N., Rahman, M.S.: Multiresunet: rethinking the u-net architecture for multimodal biomedical image segmentation. Neural Netw. 121, 74\u201387 (2020)","journal-title":"Neural Netw."},{"key":"25_CR10","doi-asserted-by":"crossref","unstructured":"Jha, D., Riegler, M.A., Johansen, D., Halvorsen, P., Johansen, H.D.: Doubleu-net: A deep convolutional neural network for medical image segmentation. In: 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), pp. 558\u2013564. IEEE (2020)","DOI":"10.1109\/CBMS49503.2020.00111"},{"issue":"7","key":"25_CR11","doi-asserted-by":"publisher","first-page":"414","DOI":"10.1038\/s41575-020-0275-y","volume":"17","author":"DS Keller","year":"2020","unstructured":"Keller, D.S., Berho, M., Perez, R.O., Wexner, S.D., Chand, M.: The multidisciplinary management of rectal cancer. Nat. Rev. Gastroenterol. Hepatol. 17(7), 414\u2013429 (2020)","journal-title":"Nat. Rev. Gastroenterol. Hepatol."},{"key":"25_CR12","doi-asserted-by":"crossref","unstructured":"Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A.C., Lo, W.Y., et\u00a0al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)","DOI":"10.1109\/ICCV51070.2023.00371"},{"key":"25_CR13","doi-asserted-by":"crossref","unstructured":"Ma, J., Wang, B.: Segment anything in medical images. arXiv preprint arXiv:2304.12306 (2023)","DOI":"10.1038\/s41467-024-44824-z"},{"key":"25_CR14","doi-asserted-by":"crossref","unstructured":"Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565\u2013571. IEEE (2016)","DOI":"10.1109\/3DV.2016.79"},{"issue":"22","key":"25_CR15","doi-asserted-by":"publisher","first-page":"6877s","DOI":"10.1158\/1078-0432.CCR-07-1137","volume":"13","author":"VR Muthusamy","year":"2007","unstructured":"Muthusamy, V.R., Chang, K.J.: Optimal methods for staging rectal cancer. Clin. Cancer Res. 13(22), 6877s\u20136884s (2007)","journal-title":"Clin. Cancer Res."},{"key":"25_CR16","unstructured":"Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M., Heinrich, M., Misawa, K., Mori, K., McDonagh, S., Hammerla, N.Y., Kainz, B., et\u00a0al.: Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)"},{"key":"25_CR17","doi-asserted-by":"crossref","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention\u2013MICCAI 2015: 18th International Conference, Munich, Germany, October 5\u20139, 2015, Proceedings, Part III 18, pp. 234\u2013241. Springer (2015)","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"25_CR18","doi-asserted-by":"crossref","unstructured":"Roth, H.R., Lu, L., Seff, A., Cherry, K.M., Hoffman, J., Wang, S., Liu, J., Turkbey, E., Summers, R.M.: A new 2.5 d representation for lymph node detection using random sets of deep convolutional neural network observations. In: Medical Image Computing and Computer-Assisted Intervention\u2013MICCAI 2014: 17th International Conference, Boston, MA, USA, September 14\u201318, 2014, Proceedings, Part I 17, pp. 520\u2013527. Springer (2014)","DOI":"10.1007\/978-3-319-10404-1_65"},{"key":"25_CR19","doi-asserted-by":"crossref","unstructured":"Wang, H., Cao, P., Wang, J., Zaiane, O.R.: Uctransnet: rethinking the skip connections in u-net from a channel-wise perspective with transformer. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.\u00a036, pp. 2441\u20132449 (2022)","DOI":"10.1609\/aaai.v36i3.20144"},{"key":"25_CR20","unstructured":"Wu, J., Fu, R., Fang, H., Liu, Y., Wang, Z., Xu, Y., Jin, Y., Arbel, T.: Medical Sam adapter: adapting segment anything model for medical image segmentation. arXiv preprint arXiv:2304.12620 (2023)"},{"issue":"3","key":"25_CR21","doi-asserted-by":"publisher","first-page":"036501","DOI":"10.1117\/1.JMI.5.3.036501","volume":"5","author":"K Yan","year":"2018","unstructured":"Yan, K., Wang, X., Lu, L., Summers, R.M.: Deeplesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. J. Med. Imaging 5(3), 036501\u2013036501 (2018)","journal-title":"J. Med. Imaging"},{"key":"25_CR22","unstructured":"Zhang, H., Guo, W., Qiu, C., Wan, S., Zou, B., Wang, W., Jin, P.: Care: A large scale ct image dataset and clinical applicable benchmark model for rectal cancer segmentation. arXiv preprint arXiv:2308.08283 (2023)"},{"key":"25_CR23","doi-asserted-by":"crossref","unstructured":"Zhang, H., Xie, R., Wan, S., Jin, P.: Decoupling mil transformer-based network for weakly supervised polyp detection. In: 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 969\u2013973. IEEE (2023)","DOI":"10.1109\/BIBM58861.2023.10385406"},{"key":"25_CR24","unstructured":"Zhang, H., Yang, J., Wan, S., Fua, P.: Lefusion: synthesizing myocardial pathology on cardiac MRI via lesion-focus diffusion models. arXiv preprint arXiv:2403.14066 (2024)"},{"key":"25_CR25","doi-asserted-by":"crossref","unstructured":"Zhang, K., Liu, D.: Customized segment anything model for medical image segmentation. arXiv preprint arXiv:2304.13785 (2023)","DOI":"10.2139\/ssrn.4495221"}],"container-title":["Lecture Notes in Computer Science","Pattern Recognition and Computer Vision"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-97-8496-7_25","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,2]],"date-time":"2024-11-02T06:08:27Z","timestamp":1730527707000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-97-8496-7_25"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11,3]]},"ISBN":["9789819784950","9789819784967"],"references-count":25,"URL":"https:\/\/doi.org\/10.1007\/978-981-97-8496-7_25","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,11,3]]},"assertion":[{"value":"3 November 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PRCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Chinese Conference on Pattern Recognition and Computer Vision (PRCV)","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Urumqi","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 October 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ccprcv2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2024.prcv.cn\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}