{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T10:06:00Z","timestamp":1742983560443,"version":"3.40.3"},"publisher-location":"Singapore","reference-count":27,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789819784868"},{"type":"electronic","value":"9789819784875"}],"license":[{"start":{"date-parts":[[2024,11,4]],"date-time":"2024-11-04T00:00:00Z","timestamp":1730678400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,4]],"date-time":"2024-11-04T00:00:00Z","timestamp":1730678400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-981-97-8487-5_36","type":"book-chapter","created":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T07:04:12Z","timestamp":1730617452000},"page":"522-536","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Enhancing Time Series Classification with Explainable Time-Frequency Features Representation"],"prefix":"10.1007","author":[{"given":"Tao","family":"Ding","sequence":"first","affiliation":[]},{"given":"Wenjun","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Bo","family":"Peng","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,11,4]]},"reference":[{"key":"36_CR1","doi-asserted-by":"publisher","unstructured":"Ruiz, P.A., Flynn, M., Large, J., et al.: The great multivariate time series classification bakes off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Discov. 35(2), 401\u2013449 (2020). https:\/\/doi.org\/10.1007\/s10618-020-00727-3","DOI":"10.1007\/s10618-020-00727-3"},{"key":"36_CR2","unstructured":"Guang, L., et al.: Multi-Scale RCNN Model for Financial Time-Series Classification. arXiv: Learning (2019)"},{"key":"36_CR3","doi-asserted-by":"publisher","unstructured":"Pham, T.D.: Time\u2013frequency time\u2013space LSTM for robust classification of physiological signals. Sci. Rep. 11(1) (2021). https:\/\/doi.org\/10.1038\/s41598-021-86432-7","DOI":"10.1038\/s41598-021-86432-7"},{"key":"36_CR4","doi-asserted-by":"publisher","unstructured":"Ke, W.W., Ina, C., Leeor, H., et al.: A systematic review of time series classification techniques used in biomedical applications. Sensors 22(20), 8016 (2022). https:\/\/doi.org\/10.3390\/s22208016","DOI":"10.3390\/s22208016"},{"key":"36_CR5","unstructured":"Li, L., Li J., Wang, Y., et al.: Multivariate time series prediction of oil drilling process based on PCA-Xgboost. In: Abstract Collection of the 30th Chinese Process Control Conference (CPCC 2019), p. 54 (2019)"},{"key":"36_CR6","doi-asserted-by":"publisher","unstructured":"Tang, X., Jiang, D., Guo, B.: Spacecraft hitch detection and health evaluation based on multivariable time series. J. Phys.: Conf. Ser. 2366(1), 012031 (2022). https:\/\/doi.org\/10.1088\/1742-6596\/2366\/1\/012031","DOI":"10.1088\/1742-6596\/2366\/1\/012031"},{"key":"36_CR7","doi-asserted-by":"publisher","unstructured":"Anthony, B., Jason, L., Aaron, B., et al.: The great time series classification bakes off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Discov. 31(3), 606\u2013660 (2017). https:\/\/doi.org\/10.1007\/s10618-016-0483-9","DOI":"10.1007\/s10618-016-0483-9"},{"key":"36_CR8","unstructured":"Dau, H.A., Keogh, E., Kamgar, K., et al.: The UCR time series classification archive, October 2018. https:\/\/www.cs.ucr.edu\/\u223ceamonn\/timeseriesdata2018\/"},{"key":"36_CR9","doi-asserted-by":"crossref","unstructured":"Ye, L., Keogh, E.: Time series Shapelet: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 947\u2013956 (2009)","DOI":"10.1145\/1557019.1557122"},{"key":"36_CR10","doi-asserted-by":"crossref","unstructured":"Mueen, A., Keogh, E., Young, N.: Logical-shapelets: an expressive primitive for time series classification. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21\u201324 August 2011, pp. 1154\u20131162 (2011)","DOI":"10.1145\/2020408.2020587"},{"key":"36_CR11","doi-asserted-by":"crossref","unstructured":"Rakthanmanon, T., Keogh, E.: Fast shapelets: a scalable algorithm for discovering time series shapelets. In: Proceedings of the 2013 SIAM International Conference on Data Mining, Austin, TX, USA, 2\u20134 May 2013, pp. 668\u2013676 (2013)","DOI":"10.1137\/1.9781611972832.74"},{"key":"36_CR12","doi-asserted-by":"crossref","unstructured":"Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD \u201803), pp. 2\u201311. Association for Computing Machinery, New York, NY, USA (2003)","DOI":"10.1145\/882082.882086"},{"key":"36_CR13","doi-asserted-by":"crossref","unstructured":"Lines, J., Davis, L.M., Hills, J., Bagnall, A.: A shapelet transform for time series classification. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12\u201316 August 2012, pp. 289\u2013297 (2012)","DOI":"10.1145\/2339530.2339579"},{"key":"36_CR14","doi-asserted-by":"publisher","first-page":"851","DOI":"10.1007\/s10618-013-0322-1","volume":"28","author":"J Hills","year":"2014","unstructured":"Hills, J., Lines, J., Baranauskas, E., Mapp, J., Bagnall, A.: Classification of time series by shapelet transformation. Data Min. Knowl. Discov. 28, 851\u2013881 (2014). https:\/\/doi.org\/10.1007\/s10618-013-0322-1","journal-title":"Data Min. Knowl. Discov."},{"key":"36_CR15","doi-asserted-by":"crossref","unstructured":"Grabocka, J., Schilling, N., Wistuba, M., Schmidt-Thieme, L.: Learning time-series shapelets. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24\u201327 August 2014, pp. 392\u2013401 (2014)","DOI":"10.1145\/2623330.2623613"},{"key":"36_CR16","doi-asserted-by":"publisher","first-page":"1059","DOI":"10.3390\/s21041059","volume":"21","author":"G Vandewiele","year":"2021","unstructured":"Vandewiele, G., Ongenae, F., De Turck, F.: GENDIS: genetic discovery of shapelets. Sensors 21, 1059 (2021). https:\/\/doi.org\/10.3390\/s21041059","journal-title":"Sensors"},{"key":"36_CR17","doi-asserted-by":"publisher","unstructured":"Senin, P., Malinchik, S.: SAX-VSM: interpretable time series classification using SAX and vector space model. In: Proceedings of the 13th IEEE International Conference on Data Mining (ICDM2013), pp. 1175\u22121180. IEEE, Dallas (2013). https:\/\/doi.org\/10.1109\/ICDM.2013.52","DOI":"10.1109\/ICDM.2013.52"},{"key":"36_CR18","unstructured":"Rafiei, D., Mendelzon, O.A.: Efficient retrieval of similar time sequences using DFT. CoRR, cs.DB\/9809033 (1998)"},{"key":"36_CR19","unstructured":"Schafer, P., et al.: SFA: a symbolic Fourier approximation and index for similarity search in high dimensional datasets (2012)"},{"key":"36_CR20","doi-asserted-by":"publisher","unstructured":"Schafer, P.: The BOSS is concerned with time series classification in the presence of noise. Data Min. Knowl. Discov. 29(6), 1505\u20131530 (2015). https:\/\/doi.org\/10.1007\/s10618-014-0377-7","DOI":"10.1007\/s10618-014-0377-7"},{"key":"36_CR21","doi-asserted-by":"crossref","unstructured":"Schafer, P., Leser U.: Fast and accurate time series classification with WEASEL. In: Conference on Information and Knowledge Management (2017)","DOI":"10.1145\/3132847.3132980"},{"key":"36_CR22","doi-asserted-by":"publisher","unstructured":"Kate, J.R.: Using dynamic time warping distances as features for improved time series classification. Data Min. Knowl. Discov. 30(2), 283\u2013312 (2016). https:\/\/doi.org\/10.1007\/s10618-015-0418-x","DOI":"10.1007\/s10618-015-0418-x"},{"key":"36_CR23","volume-title":"An Introduction to Genetic Algorithms","author":"M Mitchell","year":"1998","unstructured":"Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1998)"},{"key":"36_CR24","doi-asserted-by":"crossref","unstructured":"Julstrom, B.A.: Seeding the population: improved performance in a genetic algorithm for the rectilinear Steiner problem. In: Proceedings of the 1994 ACM Symposium on Applied Computing, Phoenix, AZ, USA, 6\u20138 March 1994, pp. 222\u2013226 (1994)","DOI":"10.1145\/326619.326728"},{"key":"36_CR25","doi-asserted-by":"publisher","first-page":"117","DOI":"10.1109\/59.373934","volume":"10","author":"GB Shebl\u00e9","year":"1995","unstructured":"Shebl\u00e9, G.B., Brittig, K.: Refined genetic algorithm-economic dispatch example. IEEE Trans. Power Syst. 10, 117\u2013124 (1995). https:\/\/doi.org\/10.1109\/59.373934","journal-title":"IEEE Trans. Power Syst."},{"key":"36_CR26","doi-asserted-by":"crossref","unstructured":"Das, A., Kempe, D.: Algorithms for subset selection in linear regression. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC\u201908, pp. 45\u201354, New York, NY, USA. ACM (2008)","DOI":"10.1145\/1374376.1374384"},{"key":"36_CR27","unstructured":"Xiong, Y.: Research on Feature Representation and Clustering Method of Time Series. Chongqing University (2016)"}],"container-title":["Lecture Notes in Computer Science","Pattern Recognition and Computer Vision"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-97-8487-5_36","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T07:10:59Z","timestamp":1730617859000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-97-8487-5_36"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11,4]]},"ISBN":["9789819784868","9789819784875"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-981-97-8487-5_36","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024,11,4]]},"assertion":[{"value":"4 November 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PRCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Chinese Conference on Pattern Recognition and Computer Vision (PRCV)","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Urumqi","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 October 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ccprcv2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2024.prcv.cn\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}