{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T07:40:08Z","timestamp":1730619608614,"version":"3.28.0"},"publisher-location":"Singapore","reference-count":40,"publisher":"Springer Nature Singapore","isbn-type":[{"value":"9789819784868","type":"print"},{"value":"9789819784875","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,11,4]],"date-time":"2024-11-04T00:00:00Z","timestamp":1730678400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,4]],"date-time":"2024-11-04T00:00:00Z","timestamp":1730678400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,4]],"date-time":"2024-11-04T00:00:00Z","timestamp":1730678400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,4]],"date-time":"2024-11-04T00:00:00Z","timestamp":1730678400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-981-97-8487-5_22","type":"book-chapter","created":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T07:03:24Z","timestamp":1730617404000},"page":"309-322","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["FedDCP: Personalized Federated Learning Based on Dual Classifiers and Prototypes"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0009-0005-1542-7554","authenticated-orcid":false,"given":"Xiangxiang","family":"Li","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1485-4632","authenticated-orcid":false,"given":"Yang","family":"Hua","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5741-9318","authenticated-orcid":false,"given":"Xiaoning","family":"Song","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3307-6189","authenticated-orcid":false,"given":"Wenjie","family":"Zhang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0310-5778","authenticated-orcid":false,"given":"Xiao-jun","family":"Wu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,11,4]]},"reference":[{"key":"22_CR1","unstructured":"Acar, D.A.E., Zhao, Y., Navarro, R.M., Mattina, M., Whatmough, P.N., Saligrama, V.: Federated learning based on dynamic regularization (2021). arXiv:2111.04263"},{"key":"22_CR2","volume-title":"The EU General Data Protection Regulation","author":"A Bussche","year":"2017","unstructured":"Bussche, A.: The EU General Data Protection Regulation. GDPR, A Practical Guide. Springer (2017)"},{"key":"22_CR3","doi-asserted-by":"crossref","unstructured":"Cheng, A., Wang, P., Zhang, X.S., Cheng, J.: Differentially private federated learning with local regularization and sparsification. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 10122\u201310131 (2022)","DOI":"10.1109\/CVPR52688.2022.00988"},{"key":"22_CR4","unstructured":"Chrabaszcz, P., Loshchilov, I., Hutter, F.: A downsampled variant of imagenet as an alternative to the cifar datasets (2017). arXiv:1707.08819"},{"key":"22_CR5","unstructured":"Collins, L., Hassani, H., Mokhtari, A., Shakkottai, S.: Exploiting shared representations for personalized federated learning. In: International Conference on Machine Learning, pp. 2089\u20132099. PMLR (2021)"},{"key":"22_CR6","unstructured":"Fallah, A., Mokhtari, A., Ozdaglar, A.: Personalized federated learning with theoretical guarantees: A model-agnostic meta-learning approach. Adv. Neural. Inf. Process. Syst. 33, 3557\u20133568 (2020)"},{"key":"22_CR7","unstructured":"Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126\u20131135. PMLR (2017)"},{"key":"22_CR8","doi-asserted-by":"crossref","unstructured":"Gao, L., Fu, H., Li, L., Chen, Y., Xu, M., Xu, C.Z.: Feddc: Federated learning with non-iid data via local drift decoupling and correction. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 10112\u201310121 (2022)","DOI":"10.1109\/CVPR52688.2022.00987"},{"key":"22_CR9","doi-asserted-by":"crossref","unstructured":"Gong, X., Sharma, A., Karanam, S., Wu, Z., Chen, T., Doermann, D., Innanje, A.: Preserving privacy in federated learning with ensemble cross-domain knowledge distillation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.\u00a036, pp. 11891\u201311899 (2022)","DOI":"10.1609\/aaai.v36i11.21446"},{"key":"22_CR10","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"22_CR11","doi-asserted-by":"crossref","unstructured":"Hsu, T.M.H., Qi, H., Brown, M.: Federated visual classification with real-world data distribution. In: Computer Vision\u2013ECCV 2020: 16th European Conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part X 16, pp. 76\u201392. Springer (2020)","DOI":"10.1007\/978-3-030-58607-2_5"},{"key":"22_CR12","doi-asserted-by":"crossref","unstructured":"Huang, W., Ye, M., Du, B.: Learn from others and be yourself in heterogeneous federated learning. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 10143\u201310153 (2022)","DOI":"10.1109\/CVPR52688.2022.00990"},{"key":"22_CR13","doi-asserted-by":"crossref","unstructured":"Jiang, M., Wang, Z., Dou, Q.: Harmofl: Harmonizing local and global drifts in federated learning on heterogeneous medical images. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.\u00a036, pp. 1087\u20131095 (2022)","DOI":"10.1609\/aaai.v36i1.19993"},{"key":"22_CR14","doi-asserted-by":"crossref","unstructured":"Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A.N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., et\u00a0al.: Advances and open problems in federated learning. Found. Trends\u00ae Mach. Learn. 14(1\u20132), 1\u2013210 (2021)","DOI":"10.1561\/2200000083"},{"issue":"6","key":"22_CR15","doi-asserted-by":"publisher","first-page":"305","DOI":"10.1038\/s42256-020-0186-1","volume":"2","author":"GA Kaissis","year":"2020","unstructured":"Kaissis, G.A., Makowski, M.R., R\u00fcckert, D., Braren, R.F.: Secure, privacy-preserving and federated machine learning in medical imaging. Nat. Mach. Intell. 2(6), 305\u2013311 (2020)","journal-title":"Nat. Mach. Intell."},{"key":"22_CR16","unstructured":"Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S.J., Stich, S.U., Suresh, A.T.: Scaffold: Stochastic controlled averaging for on-device federated learning. 2(6) (2019). arXiv:1910.06378"},{"key":"22_CR17","unstructured":"Kim, J., Kim, G., Han, B.: Multi-level branched regularization for federated learning. In: International Conference on Machine Learning, pp. 11058\u201311073. PMLR (2022)"},{"key":"22_CR18","unstructured":"Krizhevsky, A., Hinton, G., et al.: Learning Multiple Layers of Features from Tiny Images (2009)"},{"issue":"14","key":"22_CR19","doi-asserted-by":"publisher","first-page":"16301","DOI":"10.1109\/JSEN.2021.3076767","volume":"21","author":"R Kumar","year":"2021","unstructured":"Kumar, R., Khan, A.A., Kumar, J., Golilarz, N.A., Zhang, S., Ting, Y., Zheng, C., Wang, W., et al.: Blockchain-federated-learning and deep learning models for covid-19 detection using ct imaging. IEEE Sens. J. 21(14), 16301\u201316314 (2021)","journal-title":"IEEE Sens. J."},{"key":"22_CR20","doi-asserted-by":"crossref","unstructured":"Li, Q., He, B., Song, D.: Model-contrastive federated learning. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 10713\u201310722 (2021)","DOI":"10.1109\/CVPR46437.2021.01057"},{"key":"22_CR21","unstructured":"Li, T., Hu, S., Beirami, A., Smith, V.: Ditto: Fair and robust federated learning through personalization. In: International Conference on Machine Learning, pp. 6357\u20136368. PMLR (2021)"},{"key":"22_CR22","first-page":"429","volume":"2","author":"T Li","year":"2020","unstructured":"Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429\u2013450 (2020)","journal-title":"Proc. Mach. Learn. Syst."},{"key":"22_CR23","first-page":"2351","volume":"33","author":"T Lin","year":"2020","unstructured":"Lin, T., Kong, L., Stich, S.U., Jaggi, M.: Ensemble distillation for robust model fusion in federated learning. Adv. Neural. Inf. Process. Syst. 33, 2351\u20132363 (2020)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"22_CR24","doi-asserted-by":"crossref","unstructured":"Liu, Y., Huang, A., Luo, Y., Huang, H., Liu, Y., Chen, Y., Feng, L., Chen, T., Yu, H., Yang, Q.: Fedvision: An online visual object detection platform powered by federated learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.\u00a034, pp. 13172\u201313179 (2020)","DOI":"10.1609\/aaai.v34i08.7021"},{"key":"22_CR25","unstructured":"McMahan, B., Moore, E., Ramage, D., Hampson, S., y\u00a0Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273\u20131282. PMLR (2017)"},{"key":"22_CR26","doi-asserted-by":"crossref","unstructured":"Niu, Y., Deng, W.: Federated learning for face recognition with gradient correction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.\u00a036, pp. 1999\u20132007 (2022)","DOI":"10.1609\/aaai.v36i2.20095"},{"key":"22_CR27","unstructured":"Oh, J., Kim, S., Yun, S.Y.: Fedbabu: Towards enhanced representation for federated image classification (2021). arXiv:2106.06042 (2021)"},{"key":"22_CR28","unstructured":"Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et\u00a0al.: Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019)"},{"key":"22_CR29","unstructured":"Shamsian, A., Navon, A., Fetaya, E., Chechik, G.: Personalized federated learning using hypernetworks. In: International Conference on Machine Learning, pp. 9489\u20139502. PMLR (2021)"},{"key":"22_CR30","unstructured":"Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. Adv. Neural Inf. Process. Syst. 30 (2017)"},{"key":"22_CR31","first-page":"21394","volume":"33","author":"T Dinh","year":"2020","unstructured":"Dinh, T., Tran, C., Nguyen, N.: Personalized federated learning with moreau envelopes. J. Adv. Neural Inf. Process. Syst. 33, 21394\u201321405 (2020)","journal-title":"J. Adv. Neural Inf. Process. Syst."},{"key":"22_CR32","doi-asserted-by":"crossref","unstructured":"Tan, A.Z., Yu, H., Cui, L., Yang, Q.: Towards personalized federated learning. IEEE Trans. Neural Netw. Learn. Syst. (2022)","DOI":"10.1109\/TNNLS.2022.3160699"},{"key":"22_CR33","doi-asserted-by":"crossref","unstructured":"Tan, Y., Long, G., Liu, L., Zhou, T., Lu, Q., Jiang, J., Zhang, C.: Fedproto: Federated prototype learning across heterogeneous clients. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.\u00a036, pp. 8432\u20138440 (2022)","DOI":"10.1609\/aaai.v36i8.20819"},{"issue":"2","key":"22_CR34","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3298981","volume":"10","author":"Q Yang","year":"2019","unstructured":"Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1\u201319 (2019)","journal-title":"ACM Trans. Intell. Syst. Technol. (TIST)"},{"key":"22_CR35","doi-asserted-by":"crossref","unstructured":"Yi, L., Wang, G., Liu, X., Shi, Z., Yu, H.: Fedgh: Heterogeneous federated learning with generalized global header. In: Proceedings of the 31st ACM International Conference on Multimedia, pp. 8686\u20138696 (2023)","DOI":"10.1145\/3581783.3611781"},{"key":"22_CR36","unstructured":"Zhang, J., Hua, Y., Cao, J., Wang, H., Song, T., Xue, Z., Ma, R., Guan, H.: Eliminating domain bias for federated learning in representation space. Adv. Neural Inf. Process. Syst. 36 (2024)"},{"key":"22_CR37","doi-asserted-by":"crossref","unstructured":"Zhang, J., Hua, Y., Wang, H., Song, T., Xue, Z., Ma, R., Guan, H.: Fedala: Adaptive local aggregation for personalized federated learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.\u00a037, pp. 11237\u201311244 (2023)","DOI":"10.1609\/aaai.v37i9.26330"},{"key":"22_CR38","doi-asserted-by":"crossref","unstructured":"Zhang, J., Hua, Y., Wang, H., Song, T., Xue, Z., Ma, R., Guan, H.: Fedcp: Separating feature information for personalized federated learning via conditional policy. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 3249\u20133261 (2023)","DOI":"10.1145\/3580305.3599345"},{"key":"22_CR39","doi-asserted-by":"crossref","unstructured":"Zhang, L., Shen, L., Ding, L., Tao, D., Duan, L.Y.: Fine-tuning global model via data-free knowledge distillation for non-iid federated learning. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 10174\u201310183 (2022)","DOI":"10.1109\/CVPR52688.2022.00993"},{"key":"22_CR40","unstructured":"Zhu, Z., Hong, J., Zhou, J.: Data-free knowledge distillation for heterogeneous federated learning. In: International Conference on Machine Learning, pp. 12878\u201312889. PMLR (2021)"}],"container-title":["Lecture Notes in Computer Science","Pattern Recognition and Computer Vision"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-97-8487-5_22","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T07:08:28Z","timestamp":1730617708000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-97-8487-5_22"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11,4]]},"ISBN":["9789819784868","9789819784875"],"references-count":40,"URL":"https:\/\/doi.org\/10.1007\/978-981-97-8487-5_22","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,11,4]]},"assertion":[{"value":"4 November 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PRCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Chinese Conference on Pattern Recognition and Computer Vision (PRCV)","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Urumqi","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 October 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ccprcv2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2024.prcv.cn\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}