{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T17:25:22Z","timestamp":1742923522999,"version":"3.40.3"},"publisher-location":"Singapore","reference-count":34,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789819756629"},{"type":"electronic","value":"9789819756636"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-981-97-5663-6_29","type":"book-chapter","created":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T01:10:40Z","timestamp":1722474640000},"page":"340-351","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["BioU-Net: Diagnosis Network Based on Spectral Feature Enhancement for Myocardial Infarction"],"prefix":"10.1007","author":[{"given":"Siyuan","family":"Li","sequence":"first","affiliation":[]},{"given":"Wenguang","family":"Zheng","sequence":"additional","affiliation":[]},{"given":"Jiayang","family":"Li","sequence":"additional","affiliation":[]},{"given":"Yingyuan","family":"Xiao","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,8,1]]},"reference":[{"key":"29_CR1","doi-asserted-by":"publisher","first-page":"467","DOI":"10.1016\/j.jmsy.2021.03.022","volume":"59","author":"Z Ye","year":"2021","unstructured":"Ye, Z., Yu, J.: AKSNet: a novel convolutional neural network with adaptive kernel width and sparse regularization for machinery fault diagnosis. J. Manuf. Syst. 59, 467\u2013480 (2021)","journal-title":"J. Manuf. Syst."},{"key":"29_CR2","doi-asserted-by":"publisher","first-page":"102906","DOI":"10.1016\/j.bspc.2021.102906","volume":"69","author":"H Almutairi","year":"2021","unstructured":"Almutairi, H., Hassan, G.M., Datta, A.: Classification of obstructive sleep apnoea from single-lead ECG signals using convolutional neural and Long Short Term Memory networks. Biomed. Signal Process. Control 69, 102906 (2021)","journal-title":"Biomed. Signal Process. Control"},{"key":"29_CR3","doi-asserted-by":"crossref","unstructured":"An, Y., Pan, L., Guo, L., et al.: Percept U-Net: percept attention-based convolutional neural network for atrial fibrillation episode localization. In: 2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA), pp. 1\u20139. IEEE (2022)","DOI":"10.1109\/DSAA54385.2022.10032402"},{"key":"29_CR4","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1016\/j.patrec.2019.02.016","volume":"122","author":"UB Baloglu","year":"2019","unstructured":"Baloglu, U.B., Talo, M., Yildirim, O., et al.: Classification of myocardial infarction with multi-lead ECG signals and deep CNN. Pattern Recogn. Lett. 122, 23\u201330 (2019)","journal-title":"Pattern Recogn. Lett."},{"key":"29_CR5","doi-asserted-by":"publisher","first-page":"119230","DOI":"10.1016\/j.ins.2023.119230","volume":"643","author":"L Chen","year":"2023","unstructured":"Chen, L., Lian, C., Zeng, Z., et al.: Cross-modal multiscale multi-instance learning for long-term ECG classification. Inf. Sci. 643, 119230 (2023)","journal-title":"Inf. Sci."},{"issue":"10","key":"29_CR6","doi-asserted-by":"publisher","first-page":"3963","DOI":"10.3390\/app14103963","volume":"14","author":"F Zhao","year":"2024","unstructured":"Zhao, F., Zhang, X., He, Z.: A lightweight convolutional neural network method for two-dimensional photoplethysmography signals. Appl. Sci. 14(10), 3963 (2024)","journal-title":"Appl. Sci."},{"key":"29_CR7","first-page":"4479","volume":"33","author":"L Chi","year":"2020","unstructured":"Chi, L., Jiang, B., Mu, Y.: Fast fourier convolution. Adv. Neural. Inf. Process. Syst. 33, 4479\u20134488 (2020)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"29_CR8","doi-asserted-by":"crossref","unstructured":"Ye, J., Wen, X.C., Wei, Y., et al.: Temporal modeling matters: a novel temporal emotional modeling approach for speech emotion recognition. In: ICASSP 2023\u20132023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1\u20135. IEEE (2023)","DOI":"10.1109\/ICASSP49357.2023.10096370"},{"key":"29_CR9","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1155\/2021\/6534942","volume":"2021","author":"G Yao","year":"2021","unstructured":"Yao, G., Mao, X., Li, N., Huaxing, X., Xiangyang, X., Jiao, Y., Ni, J.: Interpretation of electrocardiogram heartbeat by CNN and GRU. Comput. Math. Methods Med. 2021, 1\u201310 (2021). https:\/\/doi.org\/10.1155\/2021\/6534942","journal-title":"Comput. Math. Methods Med."},{"issue":"6","key":"29_CR10","doi-asserted-by":"publisher","first-page":"1744","DOI":"10.1109\/JBHI.2018.2858789","volume":"22","author":"X Fan","year":"2018","unstructured":"Fan, X., Yao, Q., Cai, Y., et al.: Multiscaled fusion of deep convolutional neural networks for screening atrial fibrillation from single lead short ECG recordings. IEEE J. Biomed. Health Inform. 22(6), 1744\u20131753 (2018)","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"29_CR11","doi-asserted-by":"publisher","first-page":"104067","DOI":"10.1016\/j.bspc.2022.104067","volume":"79","author":"M Wang","year":"2023","unstructured":"Wang, M., Rahardja, S., Fr\u00e4nti, P., et al.: Single-lead ECG recordings modeling for end-to-end recognition of atrial fibrillation with dual-path RNN. Biomed. Signal Process. Control 79, 104067 (2023)","journal-title":"Biomed. Signal Process. Control"},{"key":"29_CR12","doi-asserted-by":"crossref","unstructured":"Goldberger, A.L., Amaral, L.A.N., Glass, L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. circulation 101(23), e215-e220 (2000)","DOI":"10.1161\/01.CIR.101.23.e215"},{"key":"29_CR13","unstructured":"Goyal, P., Doll\u00e1r, P., Girshick, R., et al.: Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677 (2017)"},{"key":"29_CR14","doi-asserted-by":"crossref","unstructured":"Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition, pp. 7132\u20137141 (2018)","DOI":"10.1109\/CVPR.2018.00745"},{"key":"29_CR15","doi-asserted-by":"publisher","unstructured":"Wagner, P., Strodthoff, N., Bousseljot, R., Samek, W., Schaeffter, T.: PTB-XL, a large publicly available electrocardiography dataset (version 1.0.3). PhysioNet (2022).https:\/\/doi.org\/10.13026\/kfzx-aw45","DOI":"10.13026\/kfzx-aw45"},{"issue":"1","key":"29_CR16","doi-asserted-by":"publisher","first-page":"247","DOI":"10.1016\/j.bbe.2022.02.003","volume":"42","author":"S Kusuma","year":"2022","unstructured":"Kusuma, S., Jothi, K.R.: ECG signals-based automated diagnosis of congestive heart failure using deep CNN and LSTM architecture. Biocybernetics Biomed. Eng. 42(1), 247\u2013257 (2022)","journal-title":"Biocybernetics Biomed. Eng."},{"key":"29_CR17","doi-asserted-by":"crossref","unstructured":"Laitala, J., Jiang, M., Syrj\u00e4l\u00e4, E., et al.: Robust ECG R-peak detection using LSTM. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing, pp. 1104\u20131111 (2020)","DOI":"10.1145\/3341105.3373945"},{"key":"29_CR18","doi-asserted-by":"publisher","first-page":"107187","DOI":"10.1016\/j.knosys.2021.107187","volume":"227","author":"X Liu","year":"2021","unstructured":"Liu, X., Wang, H., Li, Z., et al.: Deep learning in ECG diagnosis: a review. Knowl.-Based Syst. 227, 107187 (2021)","journal-title":"Knowl.-Based Syst."},{"key":"29_CR19","doi-asserted-by":"crossref","unstructured":"Zhang, H., Zhao, W., Liu, S.: SE-ECGNet: a multi-scale deep residual network with squeeze-and-excitation module for ECG signal classification. In: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2685\u20132691. IEEE (2020)","DOI":"10.1109\/BIBM49941.2020.9313548"},{"key":"29_CR20","first-page":"1","volume":"70","author":"L Meng","year":"2021","unstructured":"Meng, L., Ge, K., Song, Y., et al.: Long-term wearable electrocardiogram signal monitoring and analysis based on convolutional neural network. IEEE Trans. Instrum. Meas. 70, 1\u201311 (2021)","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"13","key":"29_CR21","doi-asserted-by":"publisher","first-page":"20553","DOI":"10.1007\/s11042-022-14302-z","volume":"82","author":"H Mewada","year":"2023","unstructured":"Mewada, H.: 2D-wavelet encoded deep CNN for image-based ECG classification. Multimedia Tools Appl. 82(13), 20553\u201320569 (2023)","journal-title":"Multimedia Tools Appl."},{"issue":"03","key":"29_CR22","doi-asserted-by":"publisher","first-page":"1950002","DOI":"10.1142\/S0219519419500027","volume":"19","author":"MK Moridani","year":"2019","unstructured":"Moridani, M.K., Pouladian, M.: A novel method to ischemic heart disease detection based on non-invasive ECG imaging. J. Mech. Med. Biol. 19(03), 1950002 (2019)","journal-title":"J. Mech. Med. Biol."},{"key":"29_CR23","unstructured":"Zhao, X., Jia, H., Pang, Y., et al.: M2SNet: multi-scale in multi-scale subtraction network for medical image segmentation (2023). arXiv preprint arXiv:2303.10894"},{"key":"29_CR24","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1155\/2021\/1299870","volume":"2021","author":"ST Noor","year":"2021","unstructured":"Noor, S.T., Asad, S.T., Khan, M.M., Gaba, G.S., Al-Amri, J.F., Masud, M.: Predicting the risk of depression based on ECG using RNN. Comput. Intell. Neurosci. 2021, 1\u201312 (2021). https:\/\/doi.org\/10.1155\/2021\/1299870","journal-title":"Comput. Intell. Neurosci."},{"key":"29_CR25","first-page":"1","volume":"72","author":"X Peng","year":"2023","unstructured":"Peng, X., Zhu, H., Zhou, X., et al.: ECG signals segmentation using deep spatiotemporal feature fusion U-Net for QRS complexes and R-peak detection. IEEE Trans. Instrum. Meas. 72, 1\u201312 (2023)","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"29_CR26","doi-asserted-by":"crossref","unstructured":"Prabhakararao, E., Dandapat, S.: Multiscale convolutional neural network for detecting paroxysmal atrial fibrillation from single lead ECG signals. In: 2020 IEEE Applied Signal Processing Conference (ASPCON), pp. 339\u2013343. IEEE (2020)","DOI":"10.1109\/ASPCON49795.2020.9276690"},{"key":"29_CR27","doi-asserted-by":"publisher","first-page":"71189","DOI":"10.1109\/ACCESS.2020.2987930","volume":"8","author":"F Qiao","year":"2020","unstructured":"Qiao, F., Li, B., Zhang, Y., et al.: A fast and accurate recognition of ECG signals based on ELM-LRF and BLSTM algorithm. IEEE Access 8, 71189\u201371198 (2020)","journal-title":"IEEE Access"},{"key":"29_CR28","doi-asserted-by":"crossref","unstructured":"Reddy, L., Talwar, V., Alle, S., et al.: Imle-net: an interpretable multi-level multi-channel model for ECG classification. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp.1068\u20131074. IEEE (2021)","DOI":"10.1109\/SMC52423.2021.9658706"},{"key":"29_CR29","doi-asserted-by":"publisher","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015. MICCAI 2015. LNCS, vol. 9351. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"29_CR30","doi-asserted-by":"publisher","first-page":"106484","DOI":"10.1016\/j.engappai.2023.106484","volume":"124","author":"M Roy","year":"2023","unstructured":"Roy, M., Majumder, S., Halder, A., et al.: ECG-NET: a deep LSTM autoencoder for detecting anomalous ECG. Eng. Appl. Artif. Intell. 124, 106484 (2023)","journal-title":"Eng. Appl. Artif. Intell."},{"key":"29_CR31","doi-asserted-by":"crossref","unstructured":"Sharma D K, Chatterjee M, Kaur G, et al. Deep learning applications for disease diagnosis. In: Deep Learning for Medical Applications with Unique Data, pp. 31\u201351. Academic Press (2022)","DOI":"10.1016\/B978-0-12-824145-5.00005-8"},{"issue":"9","key":"29_CR32","doi-asserted-by":"publisher","first-page":"2501","DOI":"10.1053\/j.jvca.2019.10.005","volume":"34","author":"M Smit","year":"2020","unstructured":"Smit, M., Coetzee, A.R., Lochner, A.: The pathophysiology of myocardial ischemia and perioperative myocardial infarction. J. Cardiothorac. Vasc. Anesth. 34(9), 2501\u20132512 (2020)","journal-title":"J. Cardiothorac. Vasc. Anesth."},{"key":"29_CR33","doi-asserted-by":"crossref","unstructured":"Suvorov, R., Logacheva, E., Mashikhin, A., et al.: Resolution-robust large mask inpainting with fourier convolutions. In: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision, pp. 2149\u20132159 (2022)","DOI":"10.1109\/WACV51458.2022.00323"},{"key":"29_CR34","doi-asserted-by":"crossref","unstructured":"Toma, T.I., Choi, S.: A comparative analysis of 2D deep CNN models for arrhythmia detection using STFT-based long duration ECG spectrogram. In: 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 483\u2013488. IEEE (2022)","DOI":"10.1109\/ICUFN55119.2022.9829574"}],"container-title":["Lecture Notes in Computer Science","Advanced Intelligent Computing Technology and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-97-5663-6_29","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T01:34:33Z","timestamp":1722476073000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-97-5663-6_29"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9789819756629","9789819756636"],"references-count":34,"URL":"https:\/\/doi.org\/10.1007\/978-981-97-5663-6_29","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"1 August 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICIC","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Intelligent Computing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tianjin","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 August 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 August 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icic2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.ic-icc.cn\/2024\/index.htm","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}