{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T16:50:07Z","timestamp":1743094207037,"version":"3.40.3"},"publisher-location":"Singapore","reference-count":32,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789819754946"},{"type":"electronic","value":"9789819754953"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-981-97-5495-3_14","type":"book-chapter","created":{"date-parts":[[2024,7,25]],"date-time":"2024-07-25T10:02:27Z","timestamp":1721901747000},"page":"192-203","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Visual Analytics of\u00a0Learning Behavior Based on\u00a0the\u00a0Dendritic Neuron Model"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-8148-1509","authenticated-orcid":false,"given":"Cheng","family":"Tang","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0063-8744","authenticated-orcid":false,"given":"Li","family":"Chen","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2886-798X","authenticated-orcid":false,"given":"Gen","family":"Li","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3377-2088","authenticated-orcid":false,"given":"Tsubasa","family":"Minematsu","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0077-9072","authenticated-orcid":false,"given":"Fumiya","family":"Okubo","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3298-8124","authenticated-orcid":false,"given":"Yuta","family":"Taniguchi","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3635-9336","authenticated-orcid":false,"given":"Atsushi","family":"Shimada","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,7,26]]},"reference":[{"key":"14_CR1","doi-asserted-by":"crossref","unstructured":"Arnold, K.E., Pistilli, M.D.: Course signals at purdue: using learning analytics to increase student success. In: Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, pp. 267\u2013270 (2012)","DOI":"10.1145\/2330601.2330666"},{"key":"14_CR2","doi-asserted-by":"crossref","unstructured":"Baker, R.S., Martin, T., Rossi, L.M.: Educational data mining and learning analytics. The Wiley Handbook of Cognition and Assessment: Frameworks, Methodologies, and Applications, pp. 379\u2013396 (2016)","DOI":"10.1002\/9781118956588.ch16"},{"key":"14_CR3","doi-asserted-by":"crossref","unstructured":"Burrell, J.: How the machine \u2018thinks\u2019: understanding opacity in machine learning algorithms. Big Data Soc. 3(1), 2053951715622512 (2016)","DOI":"10.1177\/2053951715622512"},{"issue":"1","key":"14_CR4","first-page":"17","volume":"12","author":"B Dietz-Uhler","year":"2013","unstructured":"Dietz-Uhler, B., Hurn, J.E.: Using learning analytics to predict (and improve) student success: a faculty perspective. J. Interact. Online Learn. 12(1), 17\u201326 (2013)","journal-title":"J. Interact. Online Learn."},{"issue":"5\u20136","key":"14_CR5","doi-asserted-by":"publisher","first-page":"304","DOI":"10.1504\/IJTEL.2012.051816","volume":"4","author":"R Ferguson","year":"2012","unstructured":"Ferguson, R.: Learning analytics: drivers, developments and challenges. Int. J. Technol. Enhanc. Learn. 4(5\u20136), 304\u2013317 (2012)","journal-title":"Int. J. Technol. Enhanc. Learn."},{"key":"14_CR6","unstructured":"Fisher, J., Valenzuela, F.R., Whale, S.: Learning analytics: a bottom-up approach to enhancing and evaluating students\u2019 online learning. In: Office for Learning and Teaching (2014)"},{"key":"14_CR7","doi-asserted-by":"publisher","unstructured":"Gibson, D.C., Ifenthaler, D.: Preparing the next generation of education researchers for big data in higher education. In: Kei Daniel, B. (ed.) Big Data and Learning Analytics in Higher Education, pp. 29\u201342. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-06520-5_4","DOI":"10.1007\/978-3-319-06520-5_4"},{"issue":"3","key":"14_CR8","doi-asserted-by":"publisher","first-page":"685","DOI":"10.1007\/s12525-021-00475-2","volume":"31","author":"C Janiesch","year":"2021","unstructured":"Janiesch, C., Zschech, P., Heinrich, K.: Machine learning and deep learning. Electron. Mark. 31(3), 685\u2013695 (2021)","journal-title":"Electron. Mark."},{"key":"14_CR9","doi-asserted-by":"publisher","first-page":"1775","DOI":"10.1016\/j.neucom.2015.09.052","volume":"173","author":"J Ji","year":"2016","unstructured":"Ji, J., Gao, S., Cheng, J., Tang, Z., Todo, Y.: An approximate logic neuron model with a dendritic structure. Neurocomputing 173, 1775\u20131783 (2016)","journal-title":"Neurocomputing"},{"key":"14_CR10","doi-asserted-by":"publisher","first-page":"390","DOI":"10.1016\/j.neucom.2021.08.153","volume":"489","author":"J Ji","year":"2022","unstructured":"Ji, J., Tang, C., Zhao, J., Tang, Z., Todo, Y.: A survey on dendritic neuron model: Mechanisms, algorithms and practical applications. Neurocomputing 489, 390\u2013406 (2022)","journal-title":"Neurocomputing"},{"key":"14_CR11","unstructured":"Leelaluk, S., Minematsu, T., Taniguchi, Y., Okubo, F., Shimada, A.: Predicting student performance based on lecture materials data using neural network models. In: Proceedings of the 4th Workshop on Predicting Performance Based on the Analysis of Reading Behavior (2022)"},{"issue":"8","key":"14_CR12","doi-asserted-by":"publisher","first-page":"1773","DOI":"10.1021\/acs.jcim.6b00753","volume":"57","author":"RL Marchese Robinson","year":"2017","unstructured":"Marchese Robinson, R.L., Palczewska, A., Palczewski, J., Kidley, N.: Comparison of the predictive performance and interpretability of random forest and linear models on benchmark data sets. J. Chem. Inf. Model. 57(8), 1773\u20131792 (2017)","journal-title":"J. Chem. Inf. Model."},{"key":"14_CR13","unstructured":"Martins, S.R., de\u00a0U\u00f1a-\u00c1lvarez, J., Iglesias-P\u00e9rez, M.d.C.: Logistic regression with missing responses and predictors: a review of existing approaches and a case study. arXiv preprint arXiv:2302.03435 (2023)"},{"key":"14_CR14","unstructured":"McElreath, R.: CRC Texts in Statistical Science (2020)"},{"issue":"3","key":"14_CR15","doi-asserted-by":"publisher","first-page":"639","DOI":"10.1177\/07356331221129765","volume":"61","author":"R Murata","year":"2023","unstructured":"Murata, R., Okubo, F., Minematsu, T., Taniguchi, Y., Shimada, A.: Recurrent neural network-fitnets: improving early prediction of student performanceby time-series knowledge distillation. J. Educ. Comput. Res. 61(3), 639\u2013670 (2023)","journal-title":"J. Educ. Comput. Res."},{"key":"14_CR16","unstructured":"Niskanen, T., Sipola, T., V\u00e4\u00e4n\u00e4nen, O.: Latest trends in artificial intelligence technology: a scoping review. arXiv preprint arXiv:2305.04532 (2023)"},{"key":"14_CR17","unstructured":"Ogata, H., et al.: M2b system: a digital learning platform for traditional classrooms in university. In: Practitioner Track Proceedings, pp. 155\u2013162 (2017)"},{"key":"14_CR18","unstructured":"Ogata, H., et al.: E-book-based learning analytics in university education. In: International Conference on Computer in Education (ICCE 2015), pp. 401\u2013406. Asia-Pacific Society for Computers in Education (2015)"},{"key":"14_CR19","unstructured":"Okubo, F., Yamashita, T., Shimada, A., Konomi, S.: Students\u2019 performance prediction using data of multiple courses by recurrent neural network. In: 25th International Conference on Computers in Education (ICCE 2017), pp. 439\u2013444. Asia-Pacific Society for Computers in Education (2017)"},{"key":"14_CR20","unstructured":"O\u2019neil, C.: Weapons of math destruction: how big data increases inequality and threatens democracy. Crown (2017)"},{"key":"14_CR21","doi-asserted-by":"crossref","unstructured":"Ribeiro, M.T., Singh, S., Guestrin, C.: \u201cWhy should i trust you?\" explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135\u20131144 (2016)","DOI":"10.1145\/2939672.2939778"},{"issue":"5","key":"14_CR22","first-page":"30","volume":"46","author":"G Siemens","year":"2011","unstructured":"Siemens, G., Long, P.: Penetrating the fog: analytics in learning and education. EDUCAUSE Rev. 46(5), 30 (2011)","journal-title":"EDUCAUSE Rev."},{"issue":"10","key":"14_CR23","doi-asserted-by":"publisher","first-page":"1510","DOI":"10.1177\/0002764213479366","volume":"57","author":"S Slade","year":"2013","unstructured":"Slade, S., Prinsloo, P.: Learning analytics: ethical issues and dilemmas. Am. Behav. Sci. 57(10), 1510\u20131529 (2013)","journal-title":"Am. Behav. Sci."},{"key":"14_CR24","doi-asserted-by":"crossref","unstructured":"Song, Z., Tang, C., Ji, J., Todo, Y., Tang, Z.: A simple dendritic neural network model-based approach for daily pm2. 5 concentration prediction. Electronics 10(4), 373 (2021)","DOI":"10.3390\/electronics10040373"},{"key":"14_CR25","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2020.106052","volume":"201","author":"Z Song","year":"2020","unstructured":"Song, Z., Tang, Y., Ji, J., Todo, Y.: Evaluating a dendritic neuron model for wind speed forecasting. Knowl.-Based Syst. 201, 106052 (2020)","journal-title":"Knowl.-Based Syst."},{"key":"14_CR26","doi-asserted-by":"publisher","DOI":"10.1016\/j.engappai.2020.103627","volume":"92","author":"C Tang","year":"2020","unstructured":"Tang, C., Ji, J., Tang, Y., Gao, S., Tang, Z., Todo, Y.: A novel machine learning technique for computer-aided diagnosis. Eng. Appl. Artif. Intell. 92, 103627 (2020)","journal-title":"Eng. Appl. Artif. Intell."},{"key":"14_CR27","doi-asserted-by":"crossref","unstructured":"Tang, Y., Ji, J., Zhu, Y., Gao, S., Tang, Z., Todo, Y., et\u00a0al.: A differential evolution-oriented pruning neural network model for bankruptcy prediction. Complexity 2019, 1\u201321 (2019)","DOI":"10.1155\/2019\/8682124"},{"issue":"7","key":"14_CR28","first-page":"1012","volume":"120","author":"Z Tang","year":"2000","unstructured":"Tang, Z., Tamura, H., Ishizuka, O., Tanno, K.: A neuron model with interaction among synapses. IEEJ Trans. Electron. Inf. Syst. 120(7), 1012\u20131019 (2000)","journal-title":"IEEJ Trans. Electron. Inf. Syst."},{"key":"14_CR29","doi-asserted-by":"publisher","first-page":"96","DOI":"10.1016\/j.neunet.2014.07.011","volume":"60","author":"Y Todo","year":"2014","unstructured":"Todo, Y., Tamura, H., Yamashita, K., Tang, Z.: Unsupervised learnable neuron model with nonlinear interaction on dendrites. Neural Netw. 60, 96\u2013103 (2014)","journal-title":"Neural Netw."},{"key":"14_CR30","doi-asserted-by":"publisher","first-page":"161","DOI":"10.1023\/A:1022699900025","volume":"4","author":"PE Utgoff","year":"1989","unstructured":"Utgoff, P.E.: Incremental induction of decision trees. Mach. Learn. 4, 161\u2013186 (1989)","journal-title":"Mach. Learn."},{"issue":"3","key":"14_CR31","doi-asserted-by":"publisher","first-page":"547","DOI":"10.1177\/0735633118757015","volume":"57","author":"W Xing","year":"2019","unstructured":"Xing, W., Du, D.: Dropout prediction in moocs: using deep learning for personalized intervention. J. Educ. Comput. Res. 57(3), 547\u2013570 (2019)","journal-title":"J. Educ. Comput. Res."},{"issue":"1","key":"14_CR32","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s41239-019-0171-0","volume":"16","author":"O Zawacki-Richter","year":"2019","unstructured":"Zawacki-Richter, O., Mar\u00edn, V.I., Bond, M., Gouverneur, F.: Systematic review of research on artificial intelligence applications in higher education-where are the educators? Int. J. Educ. Technol. High. Educ. 16(1), 1\u201327 (2019)","journal-title":"Int. J. Educ. Technol. High. Educ."}],"container-title":["Lecture Notes in Computer Science","Knowledge Science, Engineering and Management"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-97-5495-3_14","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,25]],"date-time":"2024-07-25T10:05:37Z","timestamp":1721901937000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-97-5495-3_14"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9789819754946","9789819754953"],"references-count":32,"URL":"https:\/\/doi.org\/10.1007\/978-981-97-5495-3_14","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"26 July 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"KSEM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Knowledge Science, Engineering and Management","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Birmingham","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 August 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 August 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ksem2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/ai-edge.net\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}