{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T22:50:44Z","timestamp":1742943044869,"version":"3.40.3"},"publisher-location":"Singapore","reference-count":16,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789819749843"},{"type":"electronic","value":"9789819749850"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-981-97-4985-0_15","type":"book-chapter","created":{"date-parts":[[2024,7,15]],"date-time":"2024-07-15T11:07:08Z","timestamp":1721041628000},"page":"181-192","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Decision-Making Approach for\u00a0Early Plant Stress Detection from\u00a0Hyperspectral Images"],"prefix":"10.1007","author":[{"given":"Gaspard","family":"Brue","sequence":"first","affiliation":[]},{"given":"Faten","family":"Chaieb","sequence":"additional","affiliation":[]},{"given":"Jerome","family":"Dantan","sequence":"additional","affiliation":[]},{"given":"M\u00e9barek","family":"Temagoult","sequence":"additional","affiliation":[]},{"given":"Tanguy","family":"Vauchey","sequence":"additional","affiliation":[]},{"given":"Hajer","family":"Baazaoui","sequence":"additional","affiliation":[]},{"given":"Mohamad","family":"Ghassany","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,7,16]]},"reference":[{"key":"15_CR1","doi-asserted-by":"publisher","first-page":"98","DOI":"10.1016\/j.isprsjprs.2014.03.016","volume":"93","author":"J Behmann","year":"2014","unstructured":"Behmann, J., Steinr\u00fccken, J., Pl\u00fcmer, L.: Detection of early plant stress responses in hyperspectral images. ISPRS J. Photogramm. Remote. Sens. 93, 98\u2013111 (2014)","journal-title":"ISPRS J. Photogramm. Remote. Sens."},{"key":"15_CR2","first-page":"211","volume":"25","author":"A Devkota","year":"2011","unstructured":"Devkota, A., Jha, P.: Influence of water stress on growth and yield of centella asiatica. Int. Agrophys. 25, 211\u2013214 (2011)","journal-title":"Int. Agrophys."},{"issue":"4","key":"15_CR3","doi-asserted-by":"publisher","first-page":"382","DOI":"10.1016\/j.crvi.2010.01.016","volume":"333","author":"A Guiboileau","year":"2010","unstructured":"Guiboileau, A., Sormani, R., Meyer, C., Masclaux-Daubresse, C.: Senescence and death of plant organs: nutrient recycling and developmental regulation. C.R. Biol. 333(4), 382\u2013391 (2010)","journal-title":"C.R. Biol."},{"key":"15_CR4","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.isprsjprs.2013.01.001","volume":"78","author":"J Heiskanen","year":"2013","unstructured":"Heiskanen, J., Rautiainen, M., Stenberg, P., M\u00f5ttus, M., Vesanto, V.H.: Sensitivity of narrowband vegetation indices to boreal forest LAI, reflectance seasonality and species composition. ISPRS J. Photogramm. Remote. Sens. 78, 1\u201314 (2013)","journal-title":"ISPRS J. Photogramm. Remote. Sens."},{"key":"15_CR5","doi-asserted-by":"crossref","unstructured":"Laroche-Pinel, E., Albughdadi, M., Duthoit, S., Ch\u00e9ret, V., Rousseau, J., Clenet, H.: Understanding vine hyperspectral signature through different irrigation plans: a first step to monitor vineyard water status. Remote Sens. 13(3) (2021)","DOI":"10.3390\/rs13030536"},{"issue":"2","key":"15_CR6","doi-asserted-by":"publisher","first-page":"202","DOI":"10.3390\/rs10020202","volume":"10","author":"K Loggenberg","year":"2018","unstructured":"Loggenberg, K., Strever, A., Greyling, B., Poona, N.: Modelling water stress in a shiraz vineyard using hyperspectral imaging and machine learning. Remote Sens. 10(2), 202 (2018)","journal-title":"Remote Sens."},{"key":"15_CR7","doi-asserted-by":"publisher","DOI":"10.1016\/j.agwat.2023.108599","volume":"290","author":"F Mehmood","year":"2023","unstructured":"Mehmood, F., et al.: Optimizing irrigation management sustained grain yield, crop water productivity, and mitigated greenhouse gas emissions from the winter wheat field in north china plain. Agric. Water Manag. 290, 108599 (2023)","journal-title":"Agric. Water Manag."},{"key":"15_CR8","series-title":"Communications in Computer and Information Science","doi-asserted-by":"publisher","first-page":"42","DOI":"10.1007\/978-3-031-37231-5_3","volume-title":"Software Technologies - ICSOFT 2022","author":"Y Pollet","year":"2022","unstructured":"Pollet, Y., Dantan, J., Zghal, H.B.: A decision model based on an optimized choquet integral: multifactor prediction and intelligent agriculture application. In: Fill, H.G., van Sinderen, M., Maciaszek, L.A. (eds.) ICSOFT 2022. CCIS, vol. 1859, pp. 42\u201367. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-37231-5_3"},{"key":"15_CR9","doi-asserted-by":"publisher","first-page":"168","DOI":"10.1016\/j.isprsjprs.2013.10.002","volume":"86","author":"M Rossini","year":"2013","unstructured":"Rossini, M., et al.: Assessing canopy PRI from airborne imagery to map water stress in maize. ISPRS J. Photogramm. Remote. Sens. 86, 168\u2013177 (2013)","journal-title":"ISPRS J. Photogramm. Remote. Sens."},{"key":"15_CR10","doi-asserted-by":"crossref","unstructured":"Rumpf, T., Mahlein, A., D\u00f6rschlag, D., Pl\u00fcmer, L.: Identification of combined vegetation indices for the early detection of plant diseases. In: Remote Sensing for Agriculture, Ecosystems, and Hydrology XI, vol.\u00a07472, p. 747217. SPIE (2009)","DOI":"10.1117\/12.830525"},{"key":"15_CR11","doi-asserted-by":"crossref","unstructured":"Sanches, I.D., Souza\u00a0Filho, C.R., Magalh\u00e3es, L.A., Quit\u00e9rio, G.C.M., Alves, M.N., Oliveira, W.J.: Assessing the impact of hydrocarbon leakages on vegetation using reflectance spectroscopy. ISPRS J. Photogramm. Remote Sens. 78, 85\u2013101 (2013)","DOI":"10.1016\/j.isprsjprs.2013.01.007"},{"issue":"11","key":"15_CR12","doi-asserted-by":"publisher","first-page":"1683","DOI":"10.1094\/PDIS-01-12-0030-RE","volume":"96","author":"S Sankaran","year":"2012","unstructured":"Sankaran, S., Ehsani, R., Inch, S.A., Ploetz, R.C.: Evaluation of visible-near infrared reflectance spectra of avocado leaves as a non-destructive sensing tool for detection of laurel wilt. Plant Dis. 96(11), 1683\u20131689 (2012)","journal-title":"Plant Dis."},{"issue":"5","key":"15_CR13","doi-asserted-by":"publisher","first-page":"52","DOI":"10.3390\/jimaging5050052","volume":"5","author":"A Signoroni","year":"2019","unstructured":"Signoroni, A., Savardi, M., Baronio, A., Benini, S.: Deep learning meets hyperspectral image analysis: a multidisciplinary review. J. Imaging 5(5), 52 (2019)","journal-title":"J. Imaging"},{"key":"15_CR14","doi-asserted-by":"crossref","unstructured":"Theerawitaya, C., et al.: Investigating high throughput phenotyping based morpho-physiological and biochemical adaptations of Indian pennywort (centella asiatica l. urban) in response to different irrigation regimes. Plant Physiol. Biochem. 202, 107927 (2023)","DOI":"10.1016\/j.plaphy.2023.107927"},{"key":"15_CR15","doi-asserted-by":"crossref","unstructured":"Varga, L.A., Makowski, J., Zell, A.: Measuring the ripeness of fruit with hyperspectral imaging and deep learning (2021)","DOI":"10.1109\/IJCNN52387.2021.9533728"},{"issue":"13","key":"15_CR16","doi-asserted-by":"publisher","first-page":"1554","DOI":"10.3390\/rs11131554","volume":"11","author":"X Zhang","year":"2019","unstructured":"Zhang, X., et al.: A deep learning-based approach for automated yellow rust disease detection from high-resolution hyperspectral UAV images. Remote Sens. 11(13), 1554 (2019)","journal-title":"Remote Sens."}],"container-title":["Lecture Notes in Computer Science","Intelligent Information and Database Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-97-4985-0_15","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,15]],"date-time":"2024-07-15T11:13:32Z","timestamp":1721042012000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-97-4985-0_15"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9789819749843","9789819749850"],"references-count":16,"URL":"https:\/\/doi.org\/10.1007\/978-981-97-4985-0_15","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"16 July 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ACIIDS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Asian Conference on Intelligent Information and Database Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Ras Al Khaimah","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Arab Emirates","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 April 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 April 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"aciids2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/aciids.pwr.edu.pl\/2024\/index.php#about","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}