{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,23]],"date-time":"2024-11-23T12:10:04Z","timestamp":1732363804805,"version":"3.28.0"},"publisher-location":"Singapore","reference-count":32,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789819736225"},{"type":"electronic","value":"9789819736232"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-981-97-3623-2_23","type":"book-chapter","created":{"date-parts":[[2024,6,20]],"date-time":"2024-06-20T10:07:45Z","timestamp":1718878065000},"page":"314-329","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Combined Particle Filter and\u00a0Its Application on\u00a0Human Pose Estimation"],"prefix":"10.1007","author":[{"given":"Xinyang","family":"Liu","sequence":"first","affiliation":[]},{"given":"Long","family":"Ye","sequence":"additional","affiliation":[]},{"given":"Yinghao","family":"Yang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,6,21]]},"reference":[{"issue":"2","key":"23_CR1","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1023\/A:1008122917811","volume":"38","author":"D Decarlo","year":"2000","unstructured":"Decarlo, D., Metaxas, D.: Optical flow constraints on deformable models with applications to face tracking. Int. J. Comput. Vision 38(2), 99\u2013127 (2000)","journal-title":"Int. J. Comput. Vision"},{"issue":"1","key":"23_CR2","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0244474","volume":"16","author":"F Arroyo-Marioli","year":"2021","unstructured":"Arroyo-Marioli, F., Bullano, F., Kucinskas, S., et al.: Tracking R of COVID-19: a new real-time estimation using the Kalman filter. PLoS ONE 16(1), e0244474 (2021)","journal-title":"PLoS ONE"},{"issue":"5","key":"23_CR3","doi-asserted-by":"publisher","first-page":"1328","DOI":"10.1109\/TRO.2021.3056043","volume":"37","author":"X Deng","year":"2021","unstructured":"Deng, X., Mousavian, A., Xiang, Y., et al.: PoseRBPF: a rao-blackwellized particle filter for 6-D object pose tracking. IEEE Trans. Rob. 37(5), 1328\u20131342 (2021)","journal-title":"IEEE Trans. Rob."},{"key":"23_CR4","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2021.102048","volume":"71","author":"M Zhao","year":"2021","unstructured":"Zhao, M., Jha, A., Liu, Q., et al.: Faster mean-shift: GPU-accelerated clustering for cosine embedding-based cell segmentation and tracking. Med. Image Anal. 71, 102048 (2021)","journal-title":"Med. Image Anal."},{"key":"23_CR5","doi-asserted-by":"crossref","unstructured":"Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4293\u20134302 (2016)","DOI":"10.1109\/CVPR.2016.465"},{"key":"23_CR6","doi-asserted-by":"crossref","unstructured":"Dong, X., Shen, J.: Triplet loss in siamese network for object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 459\u2013474 (2018)","DOI":"10.1007\/978-3-030-01261-8_28"},{"key":"23_CR7","doi-asserted-by":"crossref","unstructured":"Milan, A., Rezatofighi, S.H., Dick, A., et al.: Online multi-target tracking using recurrent neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31, no. 1 (2017)","DOI":"10.1609\/aaai.v31i1.11194"},{"key":"23_CR8","doi-asserted-by":"crossref","unstructured":"Song, Y., Ma, C., Wu, X., et al.: Vital: visual tracking via adversarial learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8990\u20138999 (2018)","DOI":"10.1109\/CVPR.2018.00937"},{"issue":"8","key":"23_CR9","doi-asserted-by":"publisher","first-page":"3944","DOI":"10.1016\/j.eswa.2013.12.031","volume":"41","author":"T Li","year":"2014","unstructured":"Li, T., Sun, S., Sattar, T.P., et al.: Fight sample degeneracy and impoverishment in particle filters: a review of intelligent approaches. Expert Syst. Appl. 41(8), 3944\u20133954 (2014)","journal-title":"Expert Syst. Appl."},{"issue":"2","key":"23_CR10","doi-asserted-by":"publisher","first-page":"174","DOI":"10.1109\/78.978374","volume":"50","author":"MS Arulampalam","year":"2002","unstructured":"Arulampalam, M.S., Maskell, S., Gordon, N., et al.: A tutorial on particle filters for online nonlinear\/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174\u2013188 (2002)","journal-title":"IEEE Trans. Signal Process."},{"issue":"3","key":"23_CR11","doi-asserted-by":"publisher","first-page":"2693","DOI":"10.1109\/TIE.2017.2740856","volume":"65","author":"MS Haque","year":"2017","unstructured":"Haque, M.S., Choi, S., Baek, J.: Auxiliary particle filtering-based estimation of remaining useful life of IGBT. IEEE Trans. Industr. Electron. 65(3), 2693\u20132703 (2017)","journal-title":"IEEE Trans. Industr. Electron."},{"key":"23_CR12","unstructured":"Van Der Merwe, R., Doucet, A., De Freitas, N., et al.: The unscented particle filter. In: Advances in Neural Information Processing Systems, vol. 13 (2000)"},{"key":"23_CR13","doi-asserted-by":"crossref","unstructured":"Oudjane, N., Musso, C.: Progressive correction for regularized particle filters. In: Proceedings of the Third International Conference on Information Fusion, vol. 2, pp. THB2\/10\u2013THB2\/17. IEEE (2000)","DOI":"10.1109\/IFIC.2000.859873"},{"issue":"7","key":"23_CR14","doi-asserted-by":"publisher","DOI":"10.1088\/0964-1726\/20\/7\/075021","volume":"20","author":"J Liu","year":"2011","unstructured":"Liu, J., Wang, W., Ma, F.: A regularized auxiliary particle filtering approach for system state estimation and battery life prediction. Smart Mater. Struct. 20(7), 075021 (2011)","journal-title":"Smart Mater. Struct."},{"issue":"4","key":"23_CR15","doi-asserted-by":"publisher","first-page":"1967","DOI":"10.1109\/TAES.2016.150089","volume":"52","author":"A Murangira","year":"2016","unstructured":"Murangira, A., Musso, C., Dahia, K.: A mixture regularized rao-blackwellized particle filter for terrain positioning. IEEE Trans. Aerosp. Electron. Syst. 52(4), 1967\u20131985 (2016)","journal-title":"IEEE Trans. Aerosp. Electron. Syst."},{"key":"23_CR16","doi-asserted-by":"crossref","unstructured":"Chu, C.Y., Chao, C.H., Chao, M.A., et al.: Multi-prediction particle filter for efficient memory utilization. In: 2010 IEEE Workshop on Signal Processing Systems, pp. 295\u2013298. IEEE (2010)","DOI":"10.1109\/SIPS.2010.5624806"},{"key":"23_CR17","doi-asserted-by":"crossref","unstructured":"Fang, H., Fan, H., Ma, H., et al.: Lithium-ion batteries life prediction method basedon degenerative characters and improved particle filter. In: 2015 IEEE Conference on Prognostics and Health Management (PHM), pp. 1\u201310. IEEE (2015)","DOI":"10.1109\/ICPHM.2015.7245051"},{"issue":"1","key":"23_CR18","doi-asserted-by":"publisher","first-page":"4","DOI":"10.1109\/MASSP.1986.1165342","volume":"3","author":"L Rabiner","year":"1986","unstructured":"Rabiner, L., Juang, B.: An introduction to hidden Markov models. IEEE ASSP Mag. 3(1), 4\u201316 (1986)","journal-title":"IEEE ASSP Mag."},{"issue":"9","key":"23_CR19","doi-asserted-by":"publisher","first-page":"755","DOI":"10.1093\/bioinformatics\/14.9.755","volume":"14","author":"SR Eddy","year":"1998","unstructured":"Eddy, S.R.: Profile hidden Markov models. Bioinformatics 14(9), 755\u2013763 (1998)","journal-title":"Bioinformatics"},{"key":"23_CR20","doi-asserted-by":"publisher","first-page":"2","DOI":"10.1016\/j.ymssp.2015.11.008","volume":"72","author":"M Jouin","year":"2016","unstructured":"Jouin, M., Gouriveau, R., Hissel, D., et al.: Particle filter-based prognostics: review, discussion and perspectives. Mech. Syst. Signal Process. 72, 2\u201331 (2016)","journal-title":"Mech. Syst. Signal Process."},{"issue":"247","key":"23_CR21","doi-asserted-by":"publisher","first-page":"335","DOI":"10.1080\/01621459.1949.10483310","volume":"44","author":"N Metropolis","year":"1949","unstructured":"Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335\u2013341 (1949)","journal-title":"J. Am. Stat. Assoc."},{"issue":"2","key":"23_CR22","doi-asserted-by":"publisher","first-page":"167","DOI":"10.1080\/00401706.1982.10487751","volume":"24","author":"AF Seila","year":"2007","unstructured":"Seila, A.F.: Simulation and the Monte Carlo method. Technometrics 24(2), 167\u2013168 (2007)","journal-title":"Technometrics"},{"key":"23_CR23","doi-asserted-by":"publisher","first-page":"2","DOI":"10.1016\/j.ymssp.2015.11.008","volume":"72","author":"M Jouin","year":"2016","unstructured":"Jouin, M., Gouriveau, R., Hissel, D., P\u00e9ra, M.-C., Zerhouni, N.: Particle filter-based prognostics: review, discussion and perspectives. Mech. Syst. Signal Process. 72, 2\u201331 (2016)","journal-title":"Mech. Syst. Signal Process."},{"key":"23_CR24","doi-asserted-by":"publisher","DOI":"10.1002\/0470045345","volume-title":"Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches","author":"D Simon","year":"2006","unstructured":"Simon, D.: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley, Hoboken (2006)"},{"issue":"8","key":"23_CR25","doi-asserted-by":"publisher","first-page":"48","DOI":"10.1007\/BF02866759","volume":"8","author":"V Balakrishnan","year":"2003","unstructured":"Balakrishnan, V.: All about the dirac delta function (?). Resonance 8(8), 48\u201358 (2003)","journal-title":"Resonance"},{"issue":"4","key":"23_CR26","doi-asserted-by":"publisher","first-page":"801","DOI":"10.1109\/TEVC.2008.2011729","volume":"13","author":"S Park","year":"2009","unstructured":"Park, S., Hwang, J.P., Kim, E., Kang, H.-J.: A new evolutionary particle filter for the prevention of sample impoverishment. IEEE Trans. Evol. Comput. 13(4), 801\u2013809 (2009)","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"7","key":"23_CR27","doi-asserted-by":"publisher","first-page":"1637","DOI":"10.1016\/j.sigpro.2011.12.019","volume":"92","author":"T Li","year":"2012","unstructured":"Li, T., Sattar, T.P., Sun, S.: Deterministic resampling: unbiased sampling to avoid sample impoverishment in particle filters. Signal Process. 92(7), 1637\u20131645 (2012)","journal-title":"Signal Process."},{"key":"23_CR28","doi-asserted-by":"crossref","unstructured":"Sandhya, E., Prasanth, C.: Marshall-olkin discrete uniform distribution. J. Probab. 2014 (2014)","DOI":"10.1155\/2014\/979312"},{"key":"23_CR29","doi-asserted-by":"crossref","unstructured":"Comaniciu, D., Meer, P.: Mean shift analysis and applications. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1197\u20131203. IEEE (1999)","DOI":"10.1109\/ICCV.1999.790416"},{"key":"23_CR30","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"119","DOI":"10.1007\/978-3-030-20873-8_8","volume-title":"Computer Vision \u2013 ACCV 2018","author":"Q Wu","year":"2019","unstructured":"Wu, Q., Yan, Y., Liang, Y., Liu, Y., Wang, H.: DSNet: deep and shallow feature learning for efficient visual tracking. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11365, pp. 119\u2013134. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-20873-8_8"},{"key":"23_CR31","doi-asserted-by":"crossref","unstructured":"Chen, Z., Zhong, B., Li, G., et al.: Siamese box adaptive network for visual tracking. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 6668\u20136677 (2020)","DOI":"10.1109\/CVPR42600.2020.00670"},{"key":"23_CR32","doi-asserted-by":"crossref","unstructured":"Yang, T., Chan, A.B.: Recurrent filter learning for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 2010\u20132019 (2017)","DOI":"10.1109\/ICCVW.2017.235"}],"container-title":["Communications in Computer and Information Science","Digital Multimedia Communications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-97-3623-2_23","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,22]],"date-time":"2024-11-22T08:23:11Z","timestamp":1732263791000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-97-3623-2_23"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9789819736225","9789819736232"],"references-count":32,"URL":"https:\/\/doi.org\/10.1007\/978-981-97-3623-2_23","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"21 June 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"IFTC","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Forum on Digital TV and Wireless Multimedia Communications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Beijing","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21 December 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 December 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iftc2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.siga.org.cn\/xshd\/iftc2023.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}