{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T08:48:56Z","timestamp":1742978936054,"version":"3.40.3"},"publisher-location":"Singapore","reference-count":31,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789819724208"},{"type":"electronic","value":"9789819724215"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-981-97-2421-5_3","type":"book-chapter","created":{"date-parts":[[2024,5,11]],"date-time":"2024-05-11T08:01:48Z","timestamp":1715414508000},"page":"31-46","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["MICA: Multi-channel Representation Refinement Contrastive Learning for\u00a0Graph Fraud Detection"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-7021-1047","authenticated-orcid":false,"given":"Guifeng","family":"Wang","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-8325-4644","authenticated-orcid":false,"given":"Disheng","family":"Tang","sequence":"additional","affiliation":[]},{"given":"Anatoli","family":"Shatsila","sequence":"additional","affiliation":[]},{"given":"Xuecang","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,5,12]]},"reference":[{"key":"3_CR1","unstructured":"Bello, I.: LambdaNetworks: modeling long-range interactions without attention. In: International Conference on Learning Representations (2020)"},{"key":"3_CR2","unstructured":"Chen, B., et al.: GCCAD: graph contrastive coding for anomaly detection. arXiv: abs\/2108.07516 (2021)"},{"key":"3_CR3","unstructured":"Chien, E., Peng, J., Li, P., Milenkovic, O.: Adaptive universal generalized PageRank graph neural network. In: International Conference on Learning Representations (2020)"},{"key":"3_CR4","doi-asserted-by":"crossref","unstructured":"Ding, K., Zhou, Q., Tong, H., Liu, H.: Few-shot network anomaly detection via cross-network meta-learning. In: Proceedings of the Web Conference (2021)","DOI":"10.1145\/3442381.3449922"},{"key":"3_CR5","doi-asserted-by":"crossref","unstructured":"Dou, Y., Liu, Z., Sun, L., Deng, Y., Peng, H., Yu, P.S.: Enhancing graph neural network-based fraud detectors against camouflaged fraudsters. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management (2020)","DOI":"10.1145\/3340531.3411903"},{"key":"3_CR6","unstructured":"Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)"},{"key":"3_CR7","doi-asserted-by":"crossref","unstructured":"Jiang, Z., et al.: Camouflaged Chinese spam content detection with semi-supervised generative active learning. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3080\u20133085 (2020)","DOI":"10.18653\/v1\/2020.acl-main.279"},{"key":"3_CR8","unstructured":"Khosla, P., et al.: Supervised contrastive learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 18661\u201318673 (2020)"},{"key":"3_CR9","unstructured":"Kipf, T., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv: abs\/1609.02907 (2017)"},{"key":"3_CR10","unstructured":"Kreuzer, D., Beaini, D., Hamilton, W.L., L\u2019etourneau, V., Tossou, P.: Rethinking graph transformers with spectral attention. In: Advances in Neural Information Processing Systems, vol. 34 (2021)"},{"key":"3_CR11","doi-asserted-by":"crossref","unstructured":"Li, A., Qin, Z., Liu, R., Yang, Y., Li, D.: Spam review detection with graph convolutional networks. In: Proceedings of the 28th ACM International Conference on Information & Knowledge Management (2019)","DOI":"10.1145\/3357384.3357820"},{"key":"3_CR12","doi-asserted-by":"crossref","unstructured":"Liang, C., et al.: Uncovering insurance fraud conspiracy with network learning. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (2019)","DOI":"10.1145\/3331184.3331372"},{"key":"3_CR13","doi-asserted-by":"crossref","unstructured":"Liu, Y., et al.: Pick and choose: a GNN-based imbalanced learning approach for fraud detection. In: Proceedings of the Web Conference (2021)","DOI":"10.1145\/3442381.3449989"},{"key":"3_CR14","doi-asserted-by":"crossref","unstructured":"Liu, Y., Ao, X., Zhong, Q., Feng, J., Tang, J., He, Q.: Alike and unlike: resolving class imbalance problem in financial credit risk assessment. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management (2020)","DOI":"10.1145\/3340531.3412111"},{"issue":"6","key":"3_CR15","doi-asserted-by":"publisher","first-page":"2378","DOI":"10.1109\/TNNLS.2021.3068344","volume":"33","author":"Y Liu","year":"2021","unstructured":"Liu, Y., Li, Z., Pan, S., Gong, C., Zhou, C., Karypis, G.: Anomaly detection on attributed networks via contrastive self-supervised learning. IEEE Trans. Neural Netw. Learn. Syst. 33(6), 2378\u20132392 (2021)","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"3_CR16","doi-asserted-by":"crossref","unstructured":"Liu, Z., Dou, Y., Yu, P.S., Deng, Y., Peng, H.: Alleviating the inconsistency problem of applying graph neural network to fraud detection. In: Proceedings of the 43nd International ACM SIGIR Conference on Research and Development in Information Retrieval (2020)","DOI":"10.1145\/3397271.3401253"},{"key":"3_CR17","doi-asserted-by":"crossref","unstructured":"Liu, Z., Chen, C., Li, L., Zhou, J., Li, X., Song, L.: GeniePath: graph neural networks with adaptive receptive paths. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence (2019)","DOI":"10.1609\/aaai.v33i01.33014424"},{"key":"3_CR18","doi-asserted-by":"crossref","unstructured":"Liu, Z., Chen, C., Yang, X., Zhou, J., Li, X., Song, L.: Heterogeneous graph neural networks for malicious account detection. In: Proceedings of the 27th ACM International Conference on Information & Knowledge Management (2018)","DOI":"10.1145\/3269206.3272010"},{"issue":"12","key":"3_CR19","doi-asserted-by":"publisher","first-page":"12012","DOI":"10.1109\/TKDE.2021.3118815","volume":"35","author":"X Ma","year":"2021","unstructured":"Ma, X., Wu, J., Xue, S., Yang, J., Sheng, Q.Z., Xiong, H.: A comprehensive survey on graph anomaly detection with deep learning. IEEE Trans. Knowl. Data Eng. 35(12), 12012\u201312038 (2021)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"3_CR20","unstructured":"Pei, H., Wei, B., Chang, K.C.C., Lei, Y., Yang, B.: Geom-GCN: geometric graph convolutional networks. In: International Conference on Learning Representations (2020)"},{"key":"3_CR21","doi-asserted-by":"crossref","unstructured":"Ren, Y., Wang, B., Zhang, J., Chang, Y.: Adversarial active learning based heterogeneous graph neural network for fake news detection. In: 2020 IEEE International Conference on Data Mining (ICDM), pp. 452\u2013461 (2020)","DOI":"10.1109\/ICDM50108.2020.00054"},{"key":"3_CR22","unstructured":"Tian, Y., Sun, C., Poole, B., Krishnan, D., Schmid, C., Isola, P.: What makes for good views for contrastive learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6827\u20136839 (2020)"},{"key":"3_CR23","unstructured":"Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio\u2019, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018)"},{"key":"3_CR24","unstructured":"Velickovic, P., Fedus, W., Hamilton, W.L., Lio\u2019, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. In: International Conference on Learning Representations (2018)"},{"key":"3_CR25","doi-asserted-by":"crossref","unstructured":"Wang, D., et al.: A semi-supervised graph attentive network for financial fraud detection. In: IEEE International Conference on Data Mining (ICDM), pp. 598\u2013607 (2019)","DOI":"10.1109\/ICDM.2019.00070"},{"key":"3_CR26","doi-asserted-by":"crossref","unstructured":"Wang, X., Zhu, M., Bo, D., Cui, P., Shi, C., Pei, J.: AM-GCN: adaptive multi-channel graph convolutional networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2020)","DOI":"10.1145\/3394486.3403177"},{"key":"3_CR27","doi-asserted-by":"crossref","unstructured":"Wang, Y., Zhang, J., Guo, S., Yin, H., Li, C., Chen, H.: Decoupling representation learning and classification for GNN-based anomaly detection. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (2021)","DOI":"10.1145\/3404835.3462944"},{"key":"3_CR28","doi-asserted-by":"crossref","unstructured":"Yang, X., Lyu, Y., Tian, T., Liu, Y., Liu, Y., Zhang, X.: Rumor detection on social media with graph structured adversarial learning. In: Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, pp. 1417\u20131423 (2021)","DOI":"10.24963\/ijcai.2020\/197"},{"key":"3_CR29","doi-asserted-by":"crossref","unstructured":"Zhang, G., et al.: FRAUDRE: fraud detection dual-resistant to graph inconsistency and imbalance. In: 2021 IEEE International Conference on Data Mining (ICDM), pp. 867\u2013876 (2021)","DOI":"10.1109\/ICDM51629.2021.00098"},{"key":"3_CR30","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Fan, Y., Ye, Y., Zhao, L., Shi, C.: Key player identification in underground forums over attributed heterogeneous information network embedding framework. In: Proceedings of the 28th ACM International Conference on Information & Knowledge Management (CIKM 2019), pp. 549\u2013558 (2019)","DOI":"10.1145\/3357384.3357876"},{"key":"3_CR31","doi-asserted-by":"crossref","unstructured":"Zhao, T., Ni, B., Yu, W., Guo, Z., Shah, N., Jiang, M.: Action sequence augmentation for early graph-based anomaly detection. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management (2021)","DOI":"10.1145\/3459637.3482313"}],"container-title":["Lecture Notes in Computer Science","Web and Big Data"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-97-2421-5_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,11]],"date-time":"2024-05-11T08:02:47Z","timestamp":1715414567000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-97-2421-5_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9789819724208","9789819724215"],"references-count":31,"URL":"https:\/\/doi.org\/10.1007\/978-981-97-2421-5_3","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"12 May 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"APWeb-WAIM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Wuhan","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6 October 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"apwebwaim2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apweb-waim2023.com\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}