{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T21:51:56Z","timestamp":1742939516669,"version":"3.40.3"},"publisher-location":"Singapore","reference-count":29,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789819723898"},{"type":"electronic","value":"9789819723904"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-981-97-2390-4_19","type":"book-chapter","created":{"date-parts":[[2024,4,27]],"date-time":"2024-04-27T18:02:02Z","timestamp":1714240922000},"page":"270-285","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Answering Spatial Commonsense Questions by\u00a0Learning Domain-Invariant Generalization Knowledge"],"prefix":"10.1007","author":[{"given":"Miaopei","family":"Lin","sequence":"first","affiliation":[]},{"given":"Jianxing","family":"Yu","sequence":"additional","affiliation":[]},{"given":"Shiqi","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Hanjiang","family":"Lai","sequence":"additional","affiliation":[]},{"given":"Wei","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Jian","family":"Yin","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,4,28]]},"reference":[{"key":"19_CR1","doi-asserted-by":"publisher","first-page":"7480","DOI":"10.1609\/aaai.v34i05.6245","volume":"34","author":"Y Cao","year":"2020","unstructured":"Cao, Y., Fang, M., Yu, B., Zhou, J.T.: Unsupervised domain adaptation on reading comprehension. Proc. AAAI 34, 7480\u20137487 (2020)","journal-title":"Proc. AAAI"},{"key":"19_CR2","doi-asserted-by":"crossref","unstructured":"Elazar, Y., Mahabal, A., Ramachandran, D., Bedrax-Weiss, T., Roth, D.: How large are lions? inducing distributions over quantitative attributes. In: Proceedings of the 57th ACL, pp. 3973\u20133983 (2019)","DOI":"10.18653\/v1\/P19-1388"},{"key":"19_CR3","doi-asserted-by":"crossref","unstructured":"Feng, Y., Chen, X., Lin, B.Y., Wang, P., Yan, J., Ren, X.: Scalable multi-hop relational reasoning for knowledge-aware question answering. In: Proceedings of the EMNLP, pp. 1295\u20131309 (2020)","DOI":"10.18653\/v1\/2020.emnlp-main.99"},{"key":"19_CR4","doi-asserted-by":"crossref","unstructured":"Foolad, S., Kiani, K.: Luke-graph: a transformer-based approach with gated relational graph attention for cloze-style reading comprehension. arXiv preprint arXiv:2303.06675 (2023)","DOI":"10.1016\/j.neucom.2023.126786"},{"key":"19_CR5","doi-asserted-by":"crossref","unstructured":"Han, Z., Feng, Y., Sun, M.: A graph-guided reasoning approach for open-ended commonsense question answering. arXiv preprint arXiv:2303.10395 (2023)","DOI":"10.18653\/v1\/2023.pandl-1.3"},{"key":"19_CR6","unstructured":"Keklik, O.: Automatic question generation using natural language processing techniques. Ph.D. thesis, Izmir Institute of Technology (Turkey) (2018)"},{"key":"19_CR7","unstructured":"Kenton, J.D.M.W.C., Toutanova, L.K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT, pp. 4171\u20134186 (2019)"},{"key":"19_CR8","unstructured":"Kolouri, S., Nadjahi, K., Simsekli, U., Badeau, R., Rohde, G.: Generalized sliced wasserstein distances. Adv. Neural Inf. Process. Syst. 32 (2019)"},{"key":"19_CR9","doi-asserted-by":"crossref","unstructured":"Lee, S., Kim, D., Park, J.: Domain-agnostic question-answering with adversarial training. In: Proceedings of the 2nd Workshop on MRQA, pp. 196\u2013202 (2019)","DOI":"10.18653\/v1\/D19-5826"},{"key":"19_CR10","doi-asserted-by":"crossref","unstructured":"Levine, Y., et al.: Sensebert: Driving some sense into bert. In: Proceedings of the 58th ACL, pp. 4656\u20134667 (2020)","DOI":"10.18653\/v1\/2020.acl-main.423"},{"key":"19_CR11","doi-asserted-by":"crossref","unstructured":"Lin, B.Y., Chen, X., Chen, J., Ren, X.: Kagnet: knowledge-aware graph networks for commonsense reasoning. In: Proceedings of the 9th EMNLP-IJCNLP, pp. 2829\u20132839 (2019)","DOI":"10.18653\/v1\/D19-1282"},{"key":"19_CR12","doi-asserted-by":"publisher","unstructured":"Lin, M., Wang, M.-x., Yu, J., Wang, S., Lai, H., Liu, W., Yin, J.: Spatial commonsense reasoning for machine reading comprehension. In: Yang, X., et al. (eds.) Advanced Data Mining and Applications, ADMA 2023, Part II. LNCS, vol. 14177, pp. 347\u2013361. Springer, Cham (2023). https:\/\/doi.org\/10.1007\/978-3-031-46664-9_24","DOI":"10.1007\/978-3-031-46664-9_24"},{"key":"19_CR13","doi-asserted-by":"crossref","unstructured":"Liu, X., Yin, D., Feng, Y., Zhao, D.: Things not written in text: exploring spatial commonsense from visual signals. In: Proceedings of the 60th ACL, pp. 2365\u20132376 (2022)","DOI":"10.18653\/v1\/2022.acl-long.168"},{"key":"19_CR14","unstructured":"Liu, Y., et al.: Roberta: a robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019)"},{"key":"19_CR15","doi-asserted-by":"crossref","unstructured":"Park, J., et al.: Relation-aware language-graph transformer for question answering. Proc. AAAI Conf. Artif. Intell. 37(11), 13457\u201313464 (2023)","DOI":"10.1609\/aaai.v37i11.26578"},{"issue":"8","key":"19_CR16","first-page":"9","volume":"1","author":"A Radford","year":"2019","unstructured":"Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models are unsupervised multitask learners 1(8), 9 (2019)","journal-title":"Language models are unsupervised multitask learners"},{"key":"19_CR17","doi-asserted-by":"crossref","unstructured":"Speer, R., Chin, J., Havasi, C.: Conceptnet 5.5: an open multilingual graph of general knowledge. Proc. AAAI 31 (2017)","DOI":"10.1609\/aaai.v31i1.11164"},{"key":"19_CR18","doi-asserted-by":"publisher","first-page":"8968","DOI":"10.1609\/aaai.v34i05.6428","volume":"34","author":"Y Sun","year":"2020","unstructured":"Sun, Y., et al.: Ernie 2.0: a continual pre-training framework for language understanding. Proc. AAAI 34, 8968\u20138975 (2020)","journal-title":"Proc. AAAI"},{"key":"19_CR19","unstructured":"Talmor, A., Herzig, J., Lourie, N., Berant, J.: Commonsenseqa: a question answering challenge targeting commonsense knowledge. In: Proceedings of NAACL-HLT, pp. 4149\u20134158 (2019)"},{"key":"19_CR20","doi-asserted-by":"crossref","unstructured":"Tandon, N., De\u00a0Melo, G., Weikum, G.: Webchild 2.0: fine-grained commonsense knowledge distillation. In: Proceedings of ACL 2017, System Demonstrations, pp. 115\u2013120 (2017)","DOI":"10.18653\/v1\/P17-4020"},{"key":"19_CR21","unstructured":"Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)"},{"key":"19_CR22","doi-asserted-by":"publisher","first-page":"7208","DOI":"10.1609\/aaai.v33i01.33017208","volume":"33","author":"X Wang","year":"2019","unstructured":"Wang, X., et al.: Improving natural language inference using external knowledge in the science questions domain. Proc. AAAI 33, 7208\u20137215 (2019)","journal-title":"Proc. AAAI"},{"key":"19_CR23","doi-asserted-by":"crossref","unstructured":"Yasunaga, M., Ren, H., Bosselut, A., Liang, P., Leskovec, J.: Qa-gnn: reasoning with language models and knowledge graphs for question answering. In: Proceedings of the NAACL 2021, pp. 535\u2013546 (2021)","DOI":"10.18653\/v1\/2021.naacl-main.45"},{"key":"19_CR24","doi-asserted-by":"crossref","unstructured":"Ye, Q., Cao, B., Chen, N., Xu, W., Zou, Y.: Fits: fine-grained two-stage training for knowledge-aware question answering. arXiv preprint arXiv:2302.11799 (2023)","DOI":"10.1609\/aaai.v37i11.26629"},{"key":"19_CR25","doi-asserted-by":"crossref","unstructured":"Yue, X., Yao, Z., Sun, H.: Synthetic question value estimation for domain adaptation of question answering. In: Proceedings of the 60th ACL (2022)","DOI":"10.18653\/v1\/2022.acl-long.95"},{"key":"19_CR26","doi-asserted-by":"crossref","unstructured":"Yue, Z., Zeng, H., Kou, Z., Shang, L., Wang, D.: Contrastive domain adaptation for early misinformation detection: a case study on covid-19. In: Proceedings of the 31st CIKM, pp. 2423\u20132433 (2022)","DOI":"10.1145\/3511808.3557263"},{"key":"19_CR27","unstructured":"Yue, Z., Zeng, H., Kou, Z., Shang, L., Wang, D.: Domain adaptation for question answering via question classification. In: Proceedings of the 29th COLING, pp. 1776\u20131790 (2022)"},{"key":"19_CR28","unstructured":"Zhang, X., et al.: Greaselm: graph reasoning enhanced language models for question answering. In: Proceedings of ICLR (2022)"},{"key":"19_CR29","doi-asserted-by":"crossref","unstructured":"Zheng, C., Kordjamshidi, P.: Relevant commonsense subgraphs for \u201cwhat if...\u201d procedural reasoning. In: Findings of ACL 2022, pp. 1927\u20131933 (2022)","DOI":"10.18653\/v1\/2022.findings-acl.152"}],"container-title":["Lecture Notes in Computer Science","Web and Big Data"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-97-2390-4_19","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,4,27]],"date-time":"2024-04-27T18:16:21Z","timestamp":1714241781000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-97-2390-4_19"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9789819723898","9789819723904"],"references-count":29,"URL":"https:\/\/doi.org\/10.1007\/978-981-97-2390-4_19","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"28 April 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"APWeb-WAIM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Wuhan","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6 October 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"apwebwaim2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.apweb-waim2023.com\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}