{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T19:24:20Z","timestamp":1726255460380},"publisher-location":"Singapore","reference-count":16,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789819722402"},{"type":"electronic","value":"9789819722389"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-981-97-2238-9_10","type":"book-chapter","created":{"date-parts":[[2024,4,30]],"date-time":"2024-04-30T12:01:48Z","timestamp":1714478508000},"page":"129-141","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["BioReX: Biomarker Information Extraction Inspired by\u00a0Aspect-Based Sentiment Analysis"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0009-0005-3601-1451","authenticated-orcid":false,"given":"Weiting","family":"Gao","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0302-269X","authenticated-orcid":false,"given":"Xiangyu","family":"Gao","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3759-1900","authenticated-orcid":false,"given":"Wenjin","family":"Chen","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0090-0055","authenticated-orcid":false,"given":"David J.","family":"Foran","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3669-1643","authenticated-orcid":false,"given":"Yi","family":"Chen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,5,1]]},"reference":[{"issue":"2","key":"10_CR1","doi-asserted-by":"publisher","first-page":"917","DOI":"10.1007\/s11831-022-09821-9","volume":"30","author":"A Dhillon","year":"2023","unstructured":"Dhillon, A., Singh, A., Bhalla, V.K.: A systematic review on biomarker identification for cancer diagnosis and prognosis in multi-omics: from computational needs to machine learning and deep learning. Arch. Comput. Meth. Eng. 30(2), 917\u2013949 (2023)","journal-title":"Arch. Comput. Meth. Eng."},{"issue":"4","key":"10_CR2","doi-asserted-by":"publisher","first-page":"686","DOI":"10.1038\/s41416-020-01122-x","volume":"124","author":"A Echle","year":"2021","unstructured":"Echle, A., Rindtorff, N.T., Brinker, T.J., Luedde, T., Pearson, A.T., Kather, J.N.: Deep learning in cancer pathology: a new generation of clinical biomarkers. Br. J. Cancer 124(4), 686\u2013696 (2021)","journal-title":"Br. J. Cancer"},{"key":"10_CR3","doi-asserted-by":"publisher","first-page":"117693511769434","DOI":"10.1177\/1176935117694349","volume":"16","author":"DJ Foran","year":"2017","unstructured":"Foran, D.J., et al.: Roadmap to a comprehensive clinical data warehouse for precision medicine applications in oncology. Cancer Inform. 16, 1176935117694349 (2017)","journal-title":"Cancer Inform."},{"key":"10_CR4","doi-asserted-by":"crossref","unstructured":"Gao, X., et al.: CBEx: a hybrid approach for cancer biomarker extraction. In: BIBM, pp. 2958\u20132958. IEEE (2020)","DOI":"10.1109\/BIBM49941.2020.9313403"},{"key":"10_CR5","doi-asserted-by":"crossref","unstructured":"Islam, M.T., Shaikh, M., Nayak, A., Ranganathan, S.: Extracting biomarker information applying natural language processing and machine learning. In: ICBBE, pp.\u00a01\u20134. IEEE (2010)","DOI":"10.1109\/ICBBE.2010.5514717"},{"key":"10_CR6","doi-asserted-by":"crossref","unstructured":"Karimi, A., Rossi, L., Prati, A.: Adversarial training for aspect-based sentiment analysis with BERT. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 8797\u20138803. IEEE (2021)","DOI":"10.1109\/ICPR48806.2021.9412167"},{"issue":"1","key":"10_CR7","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s12911-018-0609-7","volume":"18","author":"J Lee","year":"2018","unstructured":"Lee, J., et al.: Automated extraction of biomarker information from pathology reports. BMC Med. Inform. Decis. Mak. 18(1), 1\u201311 (2018)","journal-title":"BMC Med. Inform. Decis. Mak."},{"issue":"4","key":"10_CR8","doi-asserted-by":"publisher","first-page":"1234","DOI":"10.1093\/bioinformatics\/btz682","volume":"36","author":"J Lee","year":"2020","unstructured":"Lee, J., et al.: BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36(4), 1234\u20131240 (2020)","journal-title":"Bioinformatics"},{"issue":"6","key":"10_CR9","doi-asserted-by":"publisher","first-page":"1358","DOI":"10.1109\/TCSS.2020.3033302","volume":"7","author":"H Liu","year":"2020","unstructured":"Liu, H., Chatterjee, I., Zhou, M., Lu, X.S., Abusorrah, A.: Aspect-based sentiment analysis: a survey of deep learning methods. IEEE Trans. Comput. Soc. Syst. 7(6), 1358\u20131375 (2020)","journal-title":"IEEE Trans. Comput. Soc. Syst."},{"key":"10_CR10","doi-asserted-by":"crossref","unstructured":"Liu, Q., Zhang, H., Zeng, Y., Huang, Z., Wu, Z.: Content attention model for aspect based sentiment analysis. In: WWW, pp. 1023\u20131032 (2018)","DOI":"10.1145\/3178876.3186001"},{"key":"10_CR11","doi-asserted-by":"crossref","unstructured":"Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55\u201360 (2014)","DOI":"10.3115\/v1\/P14-5010"},{"key":"10_CR12","doi-asserted-by":"publisher","unstructured":"Mohan, S., Li, D.: MedMentions: a large biomedical corpus annotated with UMLS concepts. In: 1st Conference on Automated Knowledge Base Construction, AKBC 2019, Amherst, MA, USA, 20\u201322 May 2019 (2019). https:\/\/doi.org\/10.24432\/C5G59C","DOI":"10.24432\/C5G59C"},{"issue":"5","key":"10_CR13","first-page":"507","volume":"17","author":"GK Savova","year":"2010","unstructured":"Savova, G.K., et al.: Mayo clinical text analysis and knowledge extraction system (cTAKES): architecture, component evaluation and applications. JAMIA 17(5), 507\u2013513 (2010)","journal-title":"JAMIA"},{"issue":"3","key":"10_CR14","first-page":"331","volume":"25","author":"E Soysal","year":"2018","unstructured":"Soysal, E., et al.: CLAMP-a toolkit for efficiently building customized clinical natural language processing pipelines. JAMIA 25(3), 331\u2013336 (2018)","journal-title":"JAMIA"},{"key":"10_CR15","unstructured":"Xu, H., Liu, B., Shu, L., Philip, S.Y.: BERT post-training for review reading comprehension and aspect-based sentiment analysis. In: ACL, pp. 2324\u20132335 (2019)"},{"key":"10_CR16","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijmedinf.2019.103985","volume":"132","author":"X Zhang","year":"2019","unstructured":"Zhang, X., et al.: Extracting comprehensive clinical information for breast cancer using deep learning methods. Int. J. Med. Inform. 132, 103985 (2019)","journal-title":"Int. J. Med. Inform."}],"container-title":["Lecture Notes in Computer Science","Advances in Knowledge Discovery and Data Mining"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-97-2238-9_10","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,4,30]],"date-time":"2024-04-30T12:06:43Z","timestamp":1714478803000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-97-2238-9_10"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9789819722402","9789819722389"],"references-count":16,"URL":"https:\/\/doi.org\/10.1007\/978-981-97-2238-9_10","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"1 May 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PAKDD","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Pacific-Asia Conference on Knowledge Discovery and Data Mining","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Taipei","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Taiwan","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 May 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 May 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"pakdd2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/pakdd2024.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}