{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T18:34:33Z","timestamp":1742927673340,"version":"3.40.3"},"publisher-location":"Singapore","reference-count":23,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789819706686"},{"type":"electronic","value":"9789819706693"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-981-97-0669-3_30","type":"book-chapter","created":{"date-parts":[[2024,2,28]],"date-time":"2024-02-28T21:20:16Z","timestamp":1709155216000},"page":"325-336","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Leveraging GNNs and\u00a0Node Entropy for\u00a0Anomaly Detection: Revealing Misinformation Spreader on Twitter Network"],"prefix":"10.1007","author":[{"given":"Asep","family":"Maulana","sequence":"first","affiliation":[]},{"given":"Johannes","family":"Langguth","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,2,29]]},"reference":[{"key":"30_CR1","doi-asserted-by":"publisher","first-page":"626","DOI":"10.1007\/s10618-014-0365-y","volume":"29","author":"L Akoglu","year":"2015","unstructured":"Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description: a survey. Data Min. Knowl. Disc. 29, 626\u2013688 (2015)","journal-title":"Data Min. Knowl. Disc."},{"issue":"2","key":"30_CR2","doi-asserted-by":"publisher","first-page":"242","DOI":"10.3390\/e22020242","volume":"22","author":"C Guo","year":"2020","unstructured":"Guo, C., Yang, L., Chen, X., Chen, D., Gao, H., Ma, J.: Influential nodes identification in complex networks via information entropy. Entropy 22(2), 242 (2020)","journal-title":"Entropy"},{"key":"30_CR3","unstructured":"Hamilton, W.L., et al.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems (NeurIPS) (2017)"},{"issue":"3","key":"30_CR4","doi-asserted-by":"publisher","first-page":"329","DOI":"10.1007\/s41060-022-00322-3","volume":"15","author":"J Langguth","year":"2023","unstructured":"Langguth, J., Filkukov\u00e1, P., Brenner, S., Schroeder, D.T., Pogorelov, K.: Covid-19 and 5g conspiracy theories: long term observation of a digital wildfire. Int. J. Data Sci. Anal. 15(3), 329\u2013346 (2023)","journal-title":"Int. J. Data Sci. Anal."},{"key":"30_CR5","doi-asserted-by":"crossref","unstructured":"Langguth, J., Schroeder, D.T., Filkukov\u00e1, P., Brenner, S., Phillips, J., Pogorelov, K.: Coco: an annotated twitter dataset of covid-19 conspiracy theories. J. Comput. Social Sci. 1\u201342 (2023)","DOI":"10.1007\/s42001-023-00200-3"},{"key":"30_CR6","doi-asserted-by":"publisher","DOI":"10.1016\/j.chaos.2022.112136","volume":"160","author":"M Lei","year":"2022","unstructured":"Lei, M., Cheong, K.H.: Node influence ranking in complex networks: a local structure entropy approach. Chaos, Solitons Fractals 160, 112136 (2022)","journal-title":"Chaos, Solitons Fractals"},{"key":"30_CR7","doi-asserted-by":"crossref","unstructured":"Maulana, A., Atzmueller, M.: Centrality-based anomaly detection on multi-layer networks using many-objective optimization. In: 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT), vol. 1, pp. 633\u2013638, IEEE (2020)","DOI":"10.1109\/CoDIT49905.2020.9263819"},{"issue":"9","key":"30_CR8","doi-asserted-by":"publisher","first-page":"4005","DOI":"10.3390\/app11094005","volume":"11","author":"A Maulana","year":"2021","unstructured":"Maulana, A., Atzmueller, M.: Many-objective optimization for anomaly detection on multi-layer complex interaction networks. Appl. Sci. 11(9), 4005 (2021)","journal-title":"Appl. Sci."},{"key":"30_CR9","doi-asserted-by":"crossref","unstructured":"Maulana, A., Kefalas, M., Emmerich, M.T.: Immunization of networks using genetic algorithms and multiobjective metaheuristics. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1\u20138, IEEE (2017)","DOI":"10.1109\/SSCI.2017.8285368"},{"key":"30_CR10","unstructured":"Pogorelov, K., Schroeder, D.T., Brenner, S., Langguth, J.: Fakenews: corona virus and conspiracies multimedia analysis task at mediaeval 2021. In: Multimedia Benchmark Workshop, vol. 67 (2021)"},{"key":"30_CR11","unstructured":"Pogorelov, K., Schroeder, D.T., Brenner, S., Maulana, A., Langguth, J.: Combining tweets and connections graph for fakenews detection at mediaeval 2022. In: Multimedia Benchmark Workshop (2022)"},{"key":"30_CR12","doi-asserted-by":"crossref","unstructured":"Pogorelov, K., Schroeder, D.T., Filkukov\u00e1, P., Brenner, S., Langguth, J.: Wico text: a labeled dataset of conspiracy theory and 5g-corona misinformation tweets. In: Proceedings of the 2021 Workshop on Open Challenges in Online Social Networks, pp. 21\u201325 (2021)","DOI":"10.1145\/3472720.3483617"},{"issue":"11","key":"30_CR13","doi-asserted-by":"publisher","first-page":"614","DOI":"10.3390\/e19110614","volume":"19","author":"T Qiao","year":"2017","unstructured":"Qiao, T., Shan, W., Zhou, C.: How to identify the most powerful node in complex networks? a novel entropy centrality approach. Entropy 19(11), 614 (2017)","journal-title":"Entropy"},{"issue":"1","key":"30_CR14","doi-asserted-by":"publisher","first-page":"61","DOI":"10.1109\/TNN.2008.2005605","volume":"20","author":"F Scarselli","year":"2008","unstructured":"Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61\u201380 (2008)","journal-title":"IEEE Trans. Neural Netw."},{"issue":"3","key":"30_CR15","doi-asserted-by":"publisher","first-page":"379","DOI":"10.1002\/j.1538-7305.1948.tb01338.x","volume":"27","author":"CE Shannon","year":"1948","unstructured":"Shannon, C.E.: A mathematical theory of communication. Bell Syst. Techn. J. 27(3), 379\u2013423 (1948)","journal-title":"Bell Syst. Techn. J."},{"issue":"1","key":"30_CR16","doi-asserted-by":"publisher","first-page":"22","DOI":"10.1145\/3137597.3137600","volume":"19","author":"K Shu","year":"2017","unstructured":"Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection on social media: a data mining perspective. ACM SIGKDD Explor. Newsl. 19(1), 22\u201336 (2017)","journal-title":"ACM SIGKDD Explor. Newsl."},{"issue":"11","key":"30_CR17","first-page":"2414","volume":"34","author":"P Velickovic","year":"2023","unstructured":"Velickovic, P., et al.: Graph convolutional networks: a comprehensive review. IEEE Trans. Neural Netw. Learn. Syst. 34(11), 2414\u20132440 (2023)","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"1","key":"30_CR18","first-page":"286","volume":"12","author":"DY Wohn","year":"2023","unstructured":"Wohn, D.Y., Min, S.J., Hoewe, J., Bowe, B.J.: The impact of online network diversity on familiarity and engagement with social issues news on facebook. J. Social Media Soc. 12(1), 286\u2013308 (2023)","journal-title":"J. Social Media Soc."},{"issue":"2","key":"30_CR19","doi-asserted-by":"publisher","first-page":"275","DOI":"10.3390\/e24020275","volume":"24","author":"Y Yu","year":"2022","unstructured":"Yu, Y., Zhou, B., Chen, L., Gao, T., Liu, J.: Identifying important nodes in complex networks based on node propagation entropy. Entropy 24(2), 275 (2022)","journal-title":"Entropy"},{"key":"30_CR20","doi-asserted-by":"publisher","first-page":"485","DOI":"10.1016\/j.chaos.2017.09.010","volume":"104","author":"A Zareie","year":"2017","unstructured":"Zareie, A., Sheikhahmadi, A., Fatemi, A.: Influential nodes ranking in complex networks: an entropy-based approach. Chaos, Solitons Fractals 104, 485\u2013494 (2017)","journal-title":"Chaos, Solitons Fractals"},{"key":"30_CR21","doi-asserted-by":"publisher","first-page":"749","DOI":"10.1016\/j.physa.2017.09.042","volume":"491","author":"Q Zhang","year":"2018","unstructured":"Zhang, Q., Li, M., Deng, Y.: Measure the structure similarity of nodes in complex networks based on relative entropy. Phys. A Stat. Mech. Appl. 491, 749\u2013763 (2018)","journal-title":"Phys. A Stat. Mech. Appl."},{"key":"30_CR22","doi-asserted-by":"publisher","DOI":"10.1016\/j.ipm.2019.03.004","volume":"57","author":"X Zhang","year":"2020","unstructured":"Zhang, X., Ghorbani, A.A.: An overview of online fake news: characterization, detection, and discussion. Inf. Process. Manag. 57, 102025 (2020)","journal-title":"Inf. Process. Manag."},{"key":"30_CR23","doi-asserted-by":"publisher","first-page":"57","DOI":"10.1016\/j.aiopen.2021.01.001","volume":"1","author":"J Zhou","year":"2020","unstructured":"Zhou, J., et al.: Graph neural networks: a review of methods and applications. AI Open 1, 57\u201381 (2020)","journal-title":"AI Open"}],"container-title":["Lecture Notes in Computer Science","Computational Data and Social Networks"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-97-0669-3_30","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,28]],"date-time":"2024-02-28T21:26:27Z","timestamp":1709155587000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-97-0669-3_30"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9789819706686","9789819706693"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-981-97-0669-3_30","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"29 February 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CSoNet","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computational Data and Social Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Hanoi","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vietnam","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 December 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 December 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"csonet2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/csonet-conf.github.io\/csonet23\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easy Chair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"64","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"23","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"14","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"36% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.7","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.0","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The four extended abstracts are also included in this proceedings.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}