{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,13]],"date-time":"2024-12-13T05:28:38Z","timestamp":1734067718716,"version":"3.30.2"},"publisher-location":"Singapore","reference-count":34,"publisher":"Springer Nature Singapore","isbn-type":[{"value":"9789819608102","type":"print"},{"value":"9789819608119","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,12,13]],"date-time":"2024-12-13T00:00:00Z","timestamp":1734048000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,12,13]],"date-time":"2024-12-13T00:00:00Z","timestamp":1734048000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,12,13]],"date-time":"2024-12-13T00:00:00Z","timestamp":1734048000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,12,13]],"date-time":"2024-12-13T00:00:00Z","timestamp":1734048000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-981-96-0811-9_7","type":"book-chapter","created":{"date-parts":[[2024,12,12]],"date-time":"2024-12-12T17:25:43Z","timestamp":1734024343000},"page":"91-104","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["BDC Dataset: A Comprehensive Dataset for\u00a0Automated Build Damage Classification"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0009-0001-4265-2205","authenticated-orcid":false,"given":"Xing","family":"Zi","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-1516-015X","authenticated-orcid":false,"given":"Yunxiao","family":"Shi","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0009-0006-4769-7417","authenticated-orcid":false,"given":"Taoyuan","family":"Zhu","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0009-0008-3428-5602","authenticated-orcid":false,"given":"Kairui","family":"Jin","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-5834-5181","authenticated-orcid":false,"given":"Xian","family":"Tao","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-1336-2241","authenticated-orcid":false,"given":"Jun","family":"Li","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4044-1711","authenticated-orcid":false,"given":"Karthick","family":"Thiyagarajan","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-7745-9667","authenticated-orcid":false,"given":"Mukesh","family":"Prasad","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,12,13]]},"reference":[{"key":"7_CR1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijdrr.2021.102140","volume":"56","author":"M Stepinac","year":"2021","unstructured":"Stepinac, M., et al.: Damage classification of residential buildings in historical downtown after the ML5.5 earthquake in Zagreb, Croatia in 2020. Int. J. Disast. Risk Reduct. 56, 102140 (2021). https:\/\/doi.org\/10.1016\/j.ijdrr.2021.102140","journal-title":"Int. J. Disast. Risk Reduct."},{"key":"7_CR2","doi-asserted-by":"publisher","DOI":"10.1016\/j.pdisas.2022.100238","volume":"15","author":"PK Goyal","year":"2022","unstructured":"Goyal, P.K.: Cyclonic damage assessment of rural houses for the east coastal region of India. Prog. Disast. Sci. 15, 100238 (2022). https:\/\/doi.org\/10.1016\/j.pdisas.2022.100238","journal-title":"Prog. Disast. Sci."},{"key":"7_CR3","doi-asserted-by":"publisher","DOI":"10.1016\/j.jag.2023.103443","volume":"122","author":"A Habibi","year":"2023","unstructured":"Habibi, A., Delavar, M.R., Nazari, B., Pirasteh, S., Sadeghian, M.S.: A novel approach for flood hazard assessment using hybridized ensemble models and feature selection algorithms. Int. J. Appl. Earth Obs. Geoinf. 122, 103443 (2023). https:\/\/doi.org\/10.1016\/j.jag.2023.103443","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"issue":"1","key":"7_CR4","doi-asserted-by":"publisher","first-page":"47","DOI":"10.1007\/s41685-021-00220-9","volume":"6","author":"MM Islam","year":"2022","unstructured":"Islam, M.M., Matsushita, S., Noguchi, R., Ahamed, T.: A damage-based crop insurance system for flash flooding: a satellite remote sensing and econometric approach. Asia-Pacific J. Reg. Sci. 6(1), 47\u201389 (2022). https:\/\/doi.org\/10.1007\/s41685-021-00220-9","journal-title":"Asia-Pacific J. Reg. Sci."},{"key":"7_CR5","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijdrr.2021.102602","volume":"66","author":"BB Shrestha","year":"2021","unstructured":"Shrestha, B.B., Kawasaki, A., Zin, W.W.: Development of flood damage assessment method for residential areas considering various house types for Bago Region of Myanmar. Int. J. Disast. Risk Reduct. 66, 102602 (2021). https:\/\/doi.org\/10.1016\/j.ijdrr.2021.102602","journal-title":"Int. J. Disast. Risk Reduct."},{"issue":"9","key":"7_CR6","doi-asserted-by":"publisher","first-page":"8198","DOI":"10.3390\/s100908198","volume":"10","author":"C Van Der Sande","year":"2010","unstructured":"Van Der Sande, C., Soudarissanane, S., Khoshelham, K.: Assessment of relative accuracy of AHN-2 laser scanning data using planar features. Sensors (Basel) 10(9), 8198\u20138214 (2010). https:\/\/doi.org\/10.3390\/s100908198","journal-title":"Sensors (Basel)"},{"key":"7_CR7","doi-asserted-by":"crossref","unstructured":"Yamazaki, F., Kouchi, K., Kohiyama, M., Muraoka, N., Matsuoka, M.: Earthquake damage detection using high-resolution satellite images. In: IGARSS 2004 IEEE International Geoscience and Remote Sensing Symposium, pp. 2280\u20132283. IEEE (2004)","DOI":"10.1109\/IGARSS.2004.1369739"},{"key":"7_CR8","doi-asserted-by":"crossref","unstructured":"Bai, Y., Chen, X., Kirillov, A., Yuille, A., Berg, A.C.: Point-level region contrast for object detection pre-training. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 16061\u201316070 (2022)","DOI":"10.1109\/CVPR52688.2022.01559"},{"issue":"1","key":"7_CR9","doi-asserted-by":"publisher","first-page":"145","DOI":"10.1193\/1.1650865","volume":"20","author":"K Saito","year":"2004","unstructured":"Saito, K., Spence, R.J., Going, C., Markus, M.: Using high-resolution satellite images for post-earthquake building damage assessment: a study following the 26 January 2001 Gujarat earthquake. Earthq. Spectra 20(1), 145\u2013169 (2004)","journal-title":"Earthq. Spectra"},{"key":"7_CR10","doi-asserted-by":"publisher","unstructured":"Rastiveis, H., Hosseini-Zirdoo, E., Eslamizade, F.: Automatic blocked roads assessment after earthquake using high resolution satellite imagery. Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci. XL-1\/W5, 601\u2013605 (2015). https:\/\/doi.org\/10.5194\/isprsarchives-XL-1-W5-601-2015","DOI":"10.5194\/isprsarchives-XL-1-W5-601-2015"},{"issue":"5","key":"7_CR11","first-page":"W12","volume":"38","author":"SO Elberink","year":"2011","unstructured":"Elberink, S.O., Shoko, M., Fathi, S.A., Rutzinger, M.: Detection of collapsed buildings by classifying segmented airborne laser scanner data. Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci. 38(5), W12 (2011)","journal-title":"Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci."},{"key":"7_CR12","unstructured":"Chehata, N., Guo, L., Mallet, C.: Airborne lidar feature selection for urban classification using random forests. In: Laserscanning 2009 (2009)"},{"key":"7_CR13","doi-asserted-by":"publisher","unstructured":"Gong, L., Wang, C., Wu, F., Zhang, J., Zhang, H., Li, Q.: Earthquake-induced building damage detection with post-event sub-meter VHR TerraSAR-X staring spotlight imagery. Remote Sens. 8(11) (2016). https:\/\/doi.org\/10.3390\/rs8110887","DOI":"10.3390\/rs8110887"},{"key":"7_CR14","doi-asserted-by":"crossref","unstructured":"Fujita, A., Sakurada, K., Imaizumi, T., Ito, R., Hikosaka, S., Nakamura, R.:Damage detection from aerial images via convolutional neural networks. In: 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), pp. 5\u20138. IEEE (2017)","DOI":"10.23919\/MVA.2017.7986759"},{"issue":"16","key":"7_CR15","doi-asserted-by":"publisher","first-page":"7831","DOI":"10.1007\/s00500-022-06805-6","volume":"26","author":"S Kaur","year":"2022","unstructured":"Kaur, S., Gupta, S., Singh, S., Koundal, D., Zaguia, A.: Convolutional neural network based hurricane damage detection using satellite images. Soft. Comput. 26(16), 7831\u20137845 (2022). https:\/\/doi.org\/10.1007\/s00500-022-06805-6","journal-title":"Soft. Comput."},{"key":"7_CR16","doi-asserted-by":"crossref","unstructured":"Fan, J., Xu, C., Zhang, J.: An ensemble learning approach of multi-model for classifying house damage. In: 2021 2nd International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), pp. 145\u2013152 (2021)","DOI":"10.1109\/ICBASE53849.2021.00035"},{"key":"7_CR17","doi-asserted-by":"crossref","unstructured":"Li, Y., Gu, S.: Detecting post hurricane house damage using geographic information related multi-resource classification model. In: 2021 2nd International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), pp. 492\u2013501 (2021)","DOI":"10.1109\/ICBASE53849.2021.00098"},{"issue":"5","key":"7_CR18","doi-asserted-by":"publisher","first-page":"758","DOI":"10.2105\/ajph.92.5.758","volume":"92","author":"J Krieger","year":"2002","unstructured":"Krieger, J., Higgins, D.L.: Housing and health: time again for public health action. Am. J. Public Health 92(5), 758\u2013768 (2002). https:\/\/doi.org\/10.2105\/ajph.92.5.758","journal-title":"Am. J. Public Health"},{"issue":"4","key":"7_CR19","doi-asserted-by":"publisher","first-page":"502","DOI":"10.1007\/s11524-020-00442-w","volume":"97","author":"E Nix","year":"2020","unstructured":"Nix, E., Paulose, J., Shrubsole, C., Altamirano-Medina, H., Davies, M., Khosla, R., et al.: Evaluating housing health hazards: prevalence, practices and priorities in Delhi\u2019s informal settlements. J. Urban Health 97(4), 502\u2013518 (2020). https:\/\/doi.org\/10.1007\/s11524-020-00442-w","journal-title":"J. Urban Health"},{"key":"7_CR20","doi-asserted-by":"publisher","unstructured":"Standen, J.C., Morgan, G.G., Sowerbutts, T., Blazek, K., Gugusheff, J., Puntsag, O. et al.: Prioritising housing maintenance to improve health in indigenous communities in NSW over 20 years. Int. J. Environ. Res. Public Health 17(16) (2020). https:\/\/doi.org\/10.3390\/ijerph17165946","DOI":"10.3390\/ijerph17165946"},{"key":"7_CR21","doi-asserted-by":"publisher","DOI":"10.1016\/j.jag.2023.103406","volume":"122","author":"V Zahs","year":"2023","unstructured":"Zahs, V., Anders, K., Kohns, J., Stark, A., H\u00f6fle, B.: Classification of structural building damage grades from multi-temporal photogrammetric point clouds using a machine learning model trained on virtual laser scanning data. Int. J. Appl. Earth Obs. Geoinf. 122, 103406 (2023). https:\/\/doi.org\/10.1016\/j.jag.2023.103406","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"7_CR22","doi-asserted-by":"publisher","unstructured":"Mohd, T., Mohamed Saraf, M., Pin, S.F., Hasbullah, M.N.: Designing the invention house assessment form for Kuala Krai, Malaysia. Procedia Social Behav. Sci. 234, 317\u2013325 (2016). https:\/\/doi.org\/10.1016\/j.sbspro.2016.10.248","DOI":"10.1016\/j.sbspro.2016.10.248"},{"issue":"10","key":"7_CR23","doi-asserted-by":"publisher","first-page":"4912","DOI":"10.3390\/app12104912","volume":"12","author":"J Xu","year":"2022","unstructured":"Xu, J., Zeng, F., Liu, W., Takahashi, T.: Damage detection and level classification of roof damage after typhoon faxai based on aerial photos and deep learning. Appl. Sci. 12(10), 4912 (2022)","journal-title":"Appl. Sci."},{"key":"7_CR24","unstructured":"Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V., et al.: Dinov2: learning robust visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)"},{"key":"7_CR25","unstructured":"Gupta, R., Goodman, B., Patel, N.N., Hosfelt, R., Sajeev, S., Heim, E.T., et al.: Creating xBD: a dataset for assessing building damage from satellite imagery. In: CVPR Workshops 2019 (2019)"},{"key":"7_CR26","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25 (2012)"},{"key":"7_CR27","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"7_CR28","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)"},{"key":"7_CR29","unstructured":"Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)"},{"key":"7_CR30","doi-asserted-by":"crossref","unstructured":"Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017, pp. 4700\u20134708 (2017)","DOI":"10.1109\/CVPR.2017.243"},{"key":"7_CR31","doi-asserted-by":"crossref","unstructured":"Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Proceedings of the European Conference on Computer Vision (ECCV) 2018, pp. 116\u2013131 (2018)","DOI":"10.1007\/978-3-030-01264-9_8"},{"key":"7_CR32","unstructured":"Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and $${<}0.5$$ MB model size. arXiv preprint arXiv:1602.07360 (2016)"},{"key":"7_CR33","doi-asserted-by":"crossref","unstructured":"Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., et al.: MnasNet: platform-aware neural architecture search for mobile. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 2820\u20132828 (2019)","DOI":"10.1109\/CVPR.2019.00293"},{"key":"7_CR34","unstructured":"Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)"}],"container-title":["Lecture Notes in Computer Science","Advanced Data Mining and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-96-0811-9_7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,12,12]],"date-time":"2024-12-12T18:02:33Z","timestamp":1734026553000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-96-0811-9_7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,12,13]]},"ISBN":["9789819608102","9789819608119"],"references-count":34,"URL":"https:\/\/doi.org\/10.1007\/978-981-96-0811-9_7","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,12,13]]},"assertion":[{"value":"13 December 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ADMA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Advanced Data Mining and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Sydney, NSW","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Australia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3 December 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 December 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"adma2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/adma2024.github.io\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}