{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,13]],"date-time":"2024-12-13T05:28:38Z","timestamp":1734067718838,"version":"3.30.2"},"publisher-location":"Singapore","reference-count":21,"publisher":"Springer Nature Singapore","isbn-type":[{"value":"9789819608102","type":"print"},{"value":"9789819608119","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,12,13]],"date-time":"2024-12-13T00:00:00Z","timestamp":1734048000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,12,13]],"date-time":"2024-12-13T00:00:00Z","timestamp":1734048000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,12,13]],"date-time":"2024-12-13T00:00:00Z","timestamp":1734048000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,12,13]],"date-time":"2024-12-13T00:00:00Z","timestamp":1734048000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-981-96-0811-9_4","type":"book-chapter","created":{"date-parts":[[2024,12,12]],"date-time":"2024-12-12T17:26:38Z","timestamp":1734024398000},"page":"47-61","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["PheScale: Leveraging Transformer Models for\u00a0Proactive VM Auto-scaling"],"prefix":"10.1007","author":[{"given":"Yanqin","family":"Zheng","sequence":"first","affiliation":[]},{"given":"Wang","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Changjian","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Jingya","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Wenda","family":"Tang","sequence":"additional","affiliation":[]},{"given":"Liang","family":"Qi","sequence":"additional","affiliation":[]},{"given":"Tianxiang","family":"Ai","sequence":"additional","affiliation":[]},{"given":"Guanghui","family":"Li","sequence":"additional","affiliation":[]},{"given":"Bin","family":"Yu","sequence":"additional","affiliation":[]},{"given":"Xin","family":"Yang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,12,13]]},"reference":[{"issue":"4","key":"4_CR1","doi-asserted-by":"publisher","first-page":"50","DOI":"10.1145\/1721654.1721672","volume":"53","author":"M Armbrust","year":"2010","unstructured":"Armbrust, M., et al.: A view of cloud computing. Commun. ACM 53(4), 50\u201358 (2010)","journal-title":"Commun. ACM"},{"issue":"1","key":"4_CR2","doi-asserted-by":"publisher","first-page":"176","DOI":"10.1016\/j.dss.2010.12.006","volume":"51","author":"S Marston","year":"2011","unstructured":"Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., Ghalsasi, A.: Cloud computing-the business perspective. Decis. Support Syst. 51(1), 176\u2013189 (2011)","journal-title":"Decis. Support Syst."},{"issue":"2","key":"4_CR3","doi-asserted-by":"publisher","first-page":"430","DOI":"10.1109\/TSC.2017.2711009","volume":"11","author":"Y Al-Dhuraibi","year":"2017","unstructured":"Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., Merle, P.: Elasticity in cloud computing: state of the art and research challenges. IEEE Trans. Serv. Comput. 11(2), 430\u2013447 (2017)","journal-title":"IEEE Trans. Serv. Comput."},{"issue":"3","key":"4_CR4","doi-asserted-by":"publisher","first-page":"1","DOI":"10.4018\/IJGHPC.2017070101","volume":"9","author":"MS Aslanpour","year":"2017","unstructured":"Aslanpour, M.S., Dashti, S.E.: Proactive auto-scaling algorithm (pasa) for cloud application. Int. J. Grid High Perf. Comput. (IJGHPC) 9(3), 1\u201316 (2017)","journal-title":"Int. J. Grid High Perf. Comput. (IJGHPC)"},{"issue":"8","key":"4_CR5","doi-asserted-by":"publisher","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","volume":"9","author":"S Hochreiter","year":"1997","unstructured":"Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735\u20131780 (1997)","journal-title":"Neural Comput."},{"key":"4_CR6","doi-asserted-by":"crossref","unstructured":"Zhou, H., et al.: Informer: beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 11106\u201311115 (2021)","DOI":"10.1609\/aaai.v35i12.17325"},{"key":"4_CR7","first-page":"22419","volume":"34","author":"W Haixu","year":"2021","unstructured":"Haixu, W., Jiehui, X., Wang, J., Long, M.: Autoformer: decomposition transformers with auto-correlation for long-term series forecasting. Adv. Neural. Inf. Process. Syst. 34, 22419\u201322430 (2021)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"4_CR8","unstructured":"Nie, Y., Nguyen, N.H., Sinthong, P., Kalagnanam, J.: A time series is worth 64 words: long-term forecasting with transformers. In: International Conference on Learning Representations (2023)"},{"key":"4_CR9","doi-asserted-by":"publisher","first-page":"559","DOI":"10.1007\/s10723-014-9314-7","volume":"12","author":"T Lorido-Botran","year":"2014","unstructured":"Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of auto-scaling techniques for elastic applications in cloud environments. J. Grid Comput. 12, 559\u2013592 (2014)","journal-title":"J. Grid Comput."},{"key":"4_CR10","doi-asserted-by":"publisher","first-page":"2793","DOI":"10.1016\/j.matpr.2020.11.789","volume":"45","author":"EG Radhika","year":"2021","unstructured":"Radhika, E.G., Sadasivam, G.S.: A review on prediction based autoscaling techniques for heterogeneous applications in cloud environment. Mater. Today Proc. 45, 2793\u20132800 (2021)","journal-title":"Mater. Today Proc."},{"issue":"3","key":"4_CR11","doi-asserted-by":"publisher","first-page":"1448","DOI":"10.1109\/TSC.2020.2995937","volume":"15","author":"M Abdullah","year":"2020","unstructured":"Abdullah, M., Iqbal, W., Berral, J.L., Polo, J., Carrera, D.: Burst-aware predictive autoscaling for containerized microservices. IEEE Trans. Serv. Comput. 15(3), 1448\u20131460 (2020)","journal-title":"IEEE Trans. Serv. Comput."},{"key":"4_CR12","doi-asserted-by":"crossref","unstructured":"Zhang, S., Wu, T., Pan, M., Zhang, C., Yu, Y.: A-sarsa: a predictive container auto-scaling algorithm based on reinforcement learning. In: 2020 IEEE International Conference on Web Services (ICWS), pp. 489\u2013497. IEEE (2020)","DOI":"10.1109\/ICWS49710.2020.00072"},{"key":"4_CR13","doi-asserted-by":"publisher","first-page":"173","DOI":"10.1016\/j.future.2023.05.017","volume":"148","author":"S Chouliaras","year":"2023","unstructured":"Chouliaras, S., Sotiriadis, S.: An adaptive auto-scaling framework for cloud resource provisioning. Futur. Gener. Comput. Syst. 148, 173\u2013183 (2023)","journal-title":"Futur. Gener. Comput. Syst."},{"key":"4_CR14","doi-asserted-by":"crossref","unstructured":"Roy, N., Dubey, A., Gokhale, A.: Efficient autoscaling in the cloud using predictive models for workload forecasting. In: 2011 IEEE 4th International Conference on Cloud Computing, pp. 500\u2013507. IEEE (2011)","DOI":"10.1109\/CLOUD.2011.42"},{"issue":"4","key":"4_CR15","doi-asserted-by":"publisher","first-page":"449","DOI":"10.1109\/TCC.2014.2350475","volume":"3","author":"RN Calheiros","year":"2014","unstructured":"Calheiros, R.N., Masoumi, E., Ranjan, R., Buyya, R.: Workload prediction using ARIMA model and its impact on cloud applications\u2019 QoS. IEEE Trans. Cloud Comput. 3(4), 449\u2013458 (2014)","journal-title":"IEEE Trans. Cloud Comput."},{"key":"4_CR16","doi-asserted-by":"crossref","unstructured":"Shahin, A.A.: Automatic cloud resource scaling algorithm based on long short-term memory recurrent neural network. Int. J. Adv. Comput. Sci. Appl. 7(12) (2016)","DOI":"10.14569\/IJACSA.2016.071236"},{"issue":"3","key":"4_CR17","doi-asserted-by":"publisher","first-page":"3437","DOI":"10.1007\/s11227-022-04782-z","volume":"79","author":"J Dogani","year":"2023","unstructured":"Dogani, J., Khunjush, F., Mahmoudi, M.R., Seydali, M.: Multivariate workload and resource prediction in cloud computing using CNN and GRU by attention mechanism. J. Supercomput. 79(3), 3437\u20133470 (2023)","journal-title":"J. Supercomput."},{"key":"4_CR18","doi-asserted-by":"crossref","unstructured":"Xue, S., et\u00a0al.: A meta reinforcement learning approach for predictive autoscaling in the cloud. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 4290\u20134299 (2022)","DOI":"10.1145\/3534678.3539063"},{"issue":"12","key":"4_CR19","doi-asserted-by":"publisher","first-page":"3808","DOI":"10.14778\/3611540.3611566","volume":"16","author":"Z Pan","year":"2023","unstructured":"Pan, Z., et al.: Magicscaler: uncertainty-aware, predictive autoscaling. Proc. VLDB Endow. 16(12), 3808\u20133821 (2023)","journal-title":"Proc. VLDB Endow."},{"key":"4_CR20","doi-asserted-by":"publisher","first-page":"1348","DOI":"10.1007\/s11036-018-0996-0","volume":"24","author":"JVB Benifa","year":"2019","unstructured":"Benifa, J.V.B., Dejey, D.: Rlpas: reinforcement learning-based proactive auto-scaler for resource provisioning in cloud environment. Mobile Netw. Appl. 24, 1348\u20131363 (2019)","journal-title":"Mobile Netw. Appl."},{"key":"4_CR21","doi-asserted-by":"crossref","unstructured":"Arabnejad, H., Pahl, C., Jamshidi, P., Estrada, G.: A comparison of reinforcement learning techniques for fuzzy cloud auto-scaling. In:2017 17th IEEE\/ACM international symposium on cluster, cloud and grid computing (CCGRID), pp. 64\u201373. IEEE (2017)","DOI":"10.1109\/CCGRID.2017.15"}],"container-title":["Lecture Notes in Computer Science","Advanced Data Mining and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-96-0811-9_4","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,12,12]],"date-time":"2024-12-12T18:02:25Z","timestamp":1734026545000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-96-0811-9_4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,12,13]]},"ISBN":["9789819608102","9789819608119"],"references-count":21,"URL":"https:\/\/doi.org\/10.1007\/978-981-96-0811-9_4","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,12,13]]},"assertion":[{"value":"13 December 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ADMA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Advanced Data Mining and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Sydney, NSW","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Australia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3 December 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 December 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"adma2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/adma2024.github.io\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}